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Words
The primary elements of natural languages

Each word carries some unit meaning depending 
on its context

The unit meanings of the words are 
composed/combined to produce new and more 
complicated meanings/concepts (e.g., sentences, 
documents)



Word Meanings
The fundamental of NLP is to be able to allow computers to 
understand meanings of text

𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “I have a cat” = 𝑓( 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “I” ,
𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “have” ,
𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “a” ,
𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “cat” )

How do we capture/approximate the composition function 𝑓 and 
the 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 function for words?

We will discuss word meanings in this lecture



What Are Meanings?
Definition (Webster dictionary)

The idea that is represented by a word, phrase, etc.

The idea that a person wants to express by using words, signs, etc.

The idea that is expressed in a word of writing, art, etc.



How To Represent The Meanings 
Of A Word In Computers?
Common solution: Use the sets of synonyms and hypernyms of the 
word by querying some thesaurus (e.g., WordNet)



Problems With Resources Like 
WordNet
Great as a resource but missing nuance

◦ e.g., “proficient” is listed as a synonym for “good”, but this is only true in 
some contexts.

Missing new meanings of words
◦ e.g., wicked, badass, nifty, wizard, genius, ninja, bombast

◦ very challenging to keep up-to-date.

Subjective

Require human labor to create and adapt

Difficult to compute word similarity



Representing Words As Discrete 
Symbols
In traditional NLP, words are considered as discrete symbols

Mathematically, words are represented by one-hot vectors, 
where:
◦ The dimension of the vector = the number of words in some given 

vocabulary (e.g., 500,000)

◦ Only the bit corresponding to the word is set to 1 (i.e, 0 otherwise)

hotel  = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]

motel = [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

◦ This is call the localist representation (to be distinguished with 
distributed representation in cognitive science later)



Problems With Words As Discrete 
Symbols
The size of the vectors is large

The vectors for any pair of words are orthogonal (i.e., cosine 
similarity = 0), but for similar words like “hotel” and “motel”, we 
expect their vectors to exhibit some level of similarity (i.e., the 
cosine similarity should be non-zero).

◦ e.g., in web search, a search for “Seattle hotel” should return documents 
with “Seattle model” as well.

Solution for this?
◦ Can we use the idea of synonyms and hyponyms for such one-hot 

vectors?
◦ Not working well in practice (e.g., incompleteness)

◦ Learn to explicitly encode similarity in the word vectors themselves, 
reduce the size of the vectors, go from binary vectors to continuous 
vectors



Representing Words By 
Their Contexts
Distributional semantics: a word’s meaning is given by the words that 
frequently appear close-by
◦ “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

◦ One of the most successful ideas of modern statistical NLP

When a word w appears in a text, its context is the set of words that 
appear nearby (within a fixed-size window).

Use the many contexts of w to build up a representation of w



Word Vectors
We will introduce a dense vector for each word, chosen so that it 
is similar to vectors of words appearing in similar contexts.

Word vectors are also called word embeddings or word 
representations. This is a distributed representation, e.g.,



Localist Representation 
Vs. Distributed Representation
In cognitive science, distributed representation has the following 
property (Hilton et al., 1986; Plate, 2012):

◦ A concept is represented by a pattern of activity over a collection of 
neurons (i.e., more than one neuron is required to represent a concept.)

◦ Each neuron participates in the representation of more than one 
concept.

By contrast, in localist representation, each neuron represents a 
single concept on a stand-alone basis. The critical distinction is 
that localist units have “meaning and interpretation” whereas 
units in distributed representation don’t. 

◦ “These representations are distributed, which typically has the 
consequence that interpretable information cannot be obtained by 
examining activity of single hidden units.” – Elman, 1995.

Roy, Asim. “A theory of the brain: localist representation is used widely in the brain.” Frontiers in psychology vol. 3 551



Word Meaning As A Neural 
Word Vector



How Do We Obtain Such Word Vectors?
Word2vec (Mikolove et al. 2013) is a popular framework to learn word 
vectors (although many other efforts have been made before it)

Idea:
◦ We start with a large corpus of text

◦ Every word in a fixed vocabulary is represented by a vector

◦ Go through each position 𝑡 in the text, which has a center word 𝑐 and 
context words 𝑜 (surrounding words)

◦ Use the similarity of the word vectors for 𝑐 and 𝑜 to compute the probability 
of 𝑐 given 𝑜 (𝑃(𝑐|𝑜)) (or vice versa)

◦ Keep updating the word vectors to maximize this probability



Two Variants Of Word2vec

Continuous Bag of Words (CBOW):
predicting the center words using 
the context words (𝑃(𝑤𝑡|𝑤𝑡−2, 𝑤𝑡−1, 𝑤𝑡+1, 𝑤𝑡+2))

Context words: windows of size 2 before and after the center word

Skip-grams (SG):
predicting the context words using
the center word (𝑃 𝑤𝑡+𝑖 𝑤𝑡 , 𝑖 ∈ {−2,−1,1,2})

We will only discuss Skip-grams due to its popularity



Wovd2vec: SG Objective Function
For each position 𝑖 = 1, … , 𝑁, predict the context words within a window of 
fixed size 𝑚, given the the center word 𝑤𝑖:

Likelihood = 𝐿 𝜃 = ෑ

𝑖=1

𝑁

ෑ
−𝑚≤𝑗≤𝑚

𝑗≠0

𝑃(𝑤𝑖+𝑗|𝑤𝑖; 𝜃)

The objective/loss function is the (average) negative log likelihood:

loss = 𝐽 𝜃 = −
1

𝑁


𝑖=1

𝑁


−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑃(𝑤𝑖+𝑗|𝑤𝑖; 𝜃)

𝜃 is the parameter used to define 𝑃(𝑤𝑖+𝑗|𝑤𝑖; 𝜃). It is the model parameters

Minimizing the loss function amounts to maximizing the predictive accuracy



Wovd2vec: SG Objective Function
How do we compute 𝑃(𝑤𝑖+𝑗|𝑤𝑖; 𝜃)?

We will use two vectors per word w:
◦ 𝑣𝑤 when w is a center word
◦ 𝑢𝑤 when w is a context word
◦ Using two vectors makes the later optimization easier, average 

both at the end to obtain final word vectors
◦ Although using one vector per word is possible too

Then:

𝑃 𝑤𝑖+𝑗 𝑤𝑖; 𝜃 =
exp(𝑢𝑤𝑖+𝑗

𝑇 𝑣𝑤𝑖
)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑤𝑖

)

Dot product measures similarity of two vectors

𝑢𝑇𝑣 = 𝑢. 𝑣 = 𝑢𝑖𝑣𝑖

What is 𝜃 in this case?



Wovd2vec: SG Objective Function
We compute the probability using the softmax function

𝑃 𝑤𝑖+𝑗 𝑤𝑖; 𝜃 =
exp(𝑢𝑤𝑖+𝑗

𝑇 𝑣𝑤𝑖
)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑤𝑖

)

As for training, we have a loss function 𝐽 𝜃 with the word 
vectors as the parameters. 

We want to find the parameters (word vectors) that can minimize 
this loss function.
◦ Can be solved by stochastic gradient descent.



Negative Sampling

𝑃 𝑤𝑖+𝑗 𝑤𝑖; 𝜃 =
exp(𝑢𝑤𝑖+𝑗

𝑇 𝑣𝑤𝑖
)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑤𝑖

)

The normalization factor needs to enumerate over all the 
words in the vocabulary that can be very large!

We can instead obtain only a sample of the vocabulary to 
estimate the normalization factor. This is called Negative 
Sampling as every word other than 𝑤𝑖+𝑗 is considered as 
negative in this case.



Negative Sampling in the Original Paper
Paper: “Distributed Representations of Words and Phrases and their Compositionality” 
(Mikolov et al., 2013).

Train binary logistic regression for a true pair (a center word and a word in its context 
window) versus several noise pairs (the center word paired with a random word)

Overall objection function to maximize:

The sigmoid function :

In the loss function, we basically maximize the probability of two words co-occurring in 
the first log



The Skip-gram Model With
Negative Sampling (Implementation)

This is to minimize 

Negative sampling: take 𝐾 negative samples (using word probabilities)
◦ 𝑃 𝑤 = 𝑈(𝑤)3/4/𝑍: the unigram distribution 𝑈(𝑤) raised to the power of ¾ 

◦ The power increase the probability for less frequent words and decrease the 
probability for more frequent words

Objective
◦ Maximize the probability that a real word appearing in context

◦ Minimize the probability that random words appear around the center word

is: 0.9^(3/4)/1.11 = 0.92/1.11 =0.83 
Constitution: 0.09^(3/4) /1.11 = 0.16/1.11=0.14
bombastic: 0.01^(3/4) /1.11 = 0.032/1.11=0.03



Co-occurrence Counts
Word2Vec capture the co-occurrence of words via the prediction tasks.

A simpler approach to capture word co-occurrence is via the direct co-
occurrence counts between words and X

Two options for X: words in windows and full documents
◦ Window: Counts are done between pairs of words. Similar to Word2Vec, use window 

around each word -> capturing both syntactic (POS) and semantic information

◦ Document: The co-occurrence counts are done between words and documents, 
encoding the general topics and leading to “Latent Semantic Analysis”

https://en.wikipedia.org/wiki/Latent_semantic_analysis



Example: Window Based 
Co-occurrence Matrix
Window length 1 (although 5-10 are more common)

Symmetric (don’t distinguish left or right context)

Example corpus:
◦ I like deep learning.

◦ I like NLP.

◦ I enjoy flying.



Example: Window Based 
Co-occurrence Matrix
Example corpus:
◦ I like deep learning.

◦ I like NLP.

◦ I enjoy flying.

These are the 
word vectors!



Problems With Simple 
Co-occurrence Vectors

Increase in size with vocabulary

Very high dimensional: need a lot of storage

Subsequent classification models have sparsity issues

Thus, models are less robust

Solution: Low dimensional vectors
◦ Idea: store most of the important information in a fixed, small 

number of dimensions: a dense vector

◦ Usually 25-1000 dimensions (like Word2Vec)

◦ Main question: How to reduce the dimensionality?



Method 1: Dimensionality Reduction
Singular Value Decomposition (SVD) of the co-occurrence matrix 𝑋

Factorize 𝑋 into 𝑈𝑆𝑉𝑇 where 𝑈 and 𝑉 are orthonormal (𝑈𝑇 ⋅ 𝑈 = 𝐼 and 𝑉𝑇 ⋅ 𝑉 = 𝐼 )

Retain only 𝑘 singular values, in order to generalize.

𝑋 is the best rank 𝑘 approximation to 𝑋, in terms of least squares.

Classic linear algebra result. Very expensive to compute for large matrices.



Some Tricks For Dimensionality Reduction 

Scaling the counts in the cells of 𝐴 can help a lot
◦ Problem: function words (the, he, has) are too frequent, so syntax 

has too much impact. Some fixes:
◦ 𝑀𝑖𝑛(𝐴, 𝑡) with 𝑡 ≈ 100

◦ Ignore them all

Use Pearson correlations instead of counts, then set 
negative values to 0

…



Interesting Syntactic Patterns Emerging 
In Word Vectors

COALS model from: An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence (Rohde et al., 2005)



Interesting Semantic Patterns Emerging 
In Word Vectors

COALS model from: An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence (Rohde et al., 2005)



Count Based Vs. Direct Prediction

• LSA, HAL (Lund & Burgess),
• COALS, Hellinger-PCA (Rohde 

et al, Lebret & Collobert)

• Fast training

• Efficient usage of statistics

• Primarily used to capture 
word similarity

• Disproportionate influence 
given to large counts

• Skip-gram/CBOW (Mikolov et al)
• NNLM, HLBL, RNN (Bengio et al; Collobert

& Weston; Huang et al; Mnih & Hinton)

• Scales with corpus size

• Inefficient usage of statistics

• Generate improved performance on 
other tasks

• Can capture complex patterns beyond 
word similarity



Method 2: GloVe (Pennington et al., EMNLP 2014)
Encoding Meaning In Vector Differences

Crucial insight: Ratios of co-occurrence probabilities can 
encode meaning components (i.e., relationships of words)

Probe words



Method 2: GloVe (Pennington et al., EMNLP 2014)
Encoding Meaning In Vector Differences

Crucial insight: Ratios of co-occurrence probabilities can 
encode meaning components (i.e., relationships of words)

Probe words

Large small ~1



Encoding Meaning In Vector Differences (GloVe)

Question: How can we capture ratios of co-occurrence probabilities as linear 
meaning components in a word vector space?

The loss function:

Advantages
◦ Fast training

◦ Scalable to huge corpora

◦ Good performance even with small corpus and small vectors

Word2Vec and GloVe are very popular in NLP now. Which one is better 
depends on their specific applications.

The weighting function
Number of times word 𝑗 occur 
in the context of word 𝑖



GloVe Results
Nearest words to frog:

◦ frogs

◦ toad

◦ litoria

◦ leptodactylidae

◦ rana

◦ lizard

◦ eleutherodactylus



How To Evaluate Word Vectors?
Related to general evaluation in NLP: Intrinsic vs extrinsic

Intrinsic:
◦ Evaluation on a specific/intermediate subtask

◦ Fast to compute

◦ Helps to understand that system

◦ Unclear if really helpful unless correlation to real tasks is established

Extrinsic:
◦ Evaluation on a real task (things that we will study in this class)

◦ Can take a long time to evaluate the accuracy

◦ If a problem occurs, unclear if it is due to the word vectors, the system for the real 
task, or their interactions

◦ If replacing exactly one system for the real task with another improves accuracy -> 
great!



Intrinsic Word Vector Evaluation
Word Vector Analogies

man:woman :: king:?

Evaluate word vectors by how well their 
cosine distance after addition captures 
intuitive semantic and syntactic analogy 
questions

Discarding the input words from the 
search!

Problem: What if the information is 
there but not linear?



GloVe Visualization



GloVe Visualization: Company - CEO



GloVe Visualization: Comparative 
& Superlative



Intrinsic Word Vector Evaluation
Word Vector Analogies: Syntactic and Semantic examples from:

https://code.google.com/archive/p/word2vec/source

https://code.google.com/archive/p/word2vec/source


Analogy Evaluation And Hyperparameters
Accuracy



Another Intrinsic Word Vector Evaluation
Word vector distances and their correlation with human judgments

◦ Humans estimate the relatedness of the words in pairs on a scale from 0 
(totally unrelated words) to 10 (very much related or identical words).

Example dataset: WordSim353 
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


Correlation Evaluation



Extrinsic Word Vector Evaluation
Extrinsic evaluation of word vectors: All subsequent tasks in this class

One example where good word vectors should help directly is Named Entity 
Recognition (i.e., finding names of persons, organization, or locations in text)

Word vectors/representations have been a major breakthrough in NLP in the last 
few years, enabling a novel approach for NLP based on deep learning, and leading 
to a new era for NLP with models of better performance, robustness and portability.

We will study a new generation of word vectors in a later class.


