
Named Entity Recognition
and Sequence Tagging:
MEMM, CRF and RNN
Bonan Min

bonanmin@gmail.com

Some slides are based on class materials from Thien Huu Nguyen, Ralph Grishman, Yoav Goldberg

Named Entity Recognition (NER)
Identify names of entities (i.e., persons, organizations, locations, etc.) in text

Can be casted as a sequence labeling problem via the BIO (beginning-inside-
other) tagging schema, thus can be solved by HMM

Alternative tagging scheme: BIOES (E=end; S=start of a single-token chunk)

I

HMM for Sequence Labeling
Simple and fast to train and to use

Effective for POS tagging (one POS, one state)

can be made effective for name tagging (can capture context) by
splitting states

but further splitting could lead to sparse data problems

We Want …
We want to have a more flexible means of capturing our linguistic
intuition that certain conditions lead to the increased likelihood of
certain outcomes (i.e., feature engineering)

◦ that a name on a ‘common first name’ list increases the chance that this is
the beginning of a person name

◦ that being in a sports story increases the chance of team (organization)
names

Maximum entropy modeling (logistic regression) provides one
mathematically well-founded method for combining such features in a
probabilistic model

◦ But it’s not for sequence tagging

Maximum Entropy Markov Model
(MEMM)
Starting with the conditional probability distribution

𝑃 ȁ𝑦 𝑥 = 𝑝 𝑦1, 𝑦2, … , 𝑦nȁ𝑥 =ෑ

𝑡=1

𝑛

𝑃 𝑦tȁ𝑦<𝑡 , 𝜒

Using the first-order Markov assumption (the probability of the current
state only depends on the previous state):

𝑃 𝑦tȁ𝑦<𝑡, 𝜒 ≈ 𝑃 𝑦tȁ𝑦𝑡−1, 𝜒

𝑃 ȁ𝑦 𝑥; 𝜃 =ෑ

𝑡=1

𝑛

𝑃 𝑦tȁ𝑦𝑡−1, 𝜒; 𝜃

Using logistic regression to model the probabilities 𝑃 𝑦tȁ𝑦𝑡−1, 𝜒; 𝜃 ,
allowing flexible feature engineering

The probability for one
step depends on the
entire input sentence 𝜒

Maximum Entropy Markov Model
(MEMM)
Using logistic regression to model the probabilities 𝑃 𝑦tȁ𝑦𝑡−1, 𝜒; 𝜃

Defining K binary features 𝑓𝑖(𝑦𝑡−1, 𝑥) over the the prior label 𝑦𝑡−1 and the entire input
sentence 𝑥. For examples:

𝑓𝑖(𝑦𝑡−1, 𝑥) = ቊ
1 if 𝑥𝑖 = 𝑆𝑚𝑖𝑡ℎ and 𝑦𝑡−1 = 𝐵_𝑃𝐸𝑅
0 otherwise

𝑓𝑖(𝑦𝑡−1, 𝑥) = ቊ
1 if 𝑥𝑖 is capitalized
0 otherwise

𝑓𝑖(𝑦𝑡−1, 𝑥) = ቊ
1 if 𝑥𝑖 is in the list of common names and yt−1 = O
0 otherwise

Then:

𝑃 ȁ𝑦𝑡 𝑦𝑡−1, 𝑥; 𝜃 =
exp

1=1

𝐾
𝑤𝑖
𝑦𝑡𝑓𝑖 𝑦𝑡−1, 𝑥

𝒛 𝑦𝑡−1, 𝑥

Where 𝒛 is the normalizing factor and 𝑤
𝑦𝑡=[𝑤1

𝑦𝑡, 𝑤2
𝑦𝑡, …, 𝑤𝐾

𝑦𝑡] is the model parameter
specific to 𝑦𝑡

Maximum Entropy Markov Model
(MEMM)
In order to train the MEMM model (i.e., finding the model parameters),
we can also optimize the likelihood function over the training dataset:

𝐿 𝜃 = −

𝑥,𝑦 ∈𝐷

log 𝑃 ȁ𝑦 𝑥, 𝜃

There is no closed-form solution for this optimization problem (as
HMM); an iterative solver is required

The good thing is the function is convex, so easier to solve those with
gradient descent

Feature Engineering
The main task when using a MaxEnt classifier (e.g., MEMM)
is to select an appropriate set of features

◦ words in the immediate neighborhood are typical basic features: 𝑤𝑖−1, 𝑤𝑖,
𝑤𝑖+1

◦ patterns constructed for rule-based taggers are likely candidates: 𝑤𝑖+1 is an
initial

◦ membership on word lists: 𝑤𝑖 is a common first name (from Census)

Greedy Decoding for MEMM
At 𝑖 = 0, select:

𝑦1
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑃 𝑦1 = 𝑠 𝑦0 = 𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑃 𝑦1 = 𝑠 𝑥

At 𝑖 > 0, select:

𝑦𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑃 𝑦𝑖 = 𝑠 𝑦𝑖−1 = 𝑦𝑖−1

∗ , 𝑥

Note that we need to condition on the predicted label from the
previous step 𝑦𝑖−1

∗ here as this is now known in the inference/test
time.

Viterbi Decoding for MEMM
In HMM, we infer the best label sequence via the joint probability
𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑥, 𝑦) using the recurrence:

𝑣𝑡 𝑠 = 𝑚𝑎𝑥𝑠′∈𝑌[𝑣𝑡−1 𝑠′ 𝑃 𝑦𝑡 = 𝑠 𝑦𝑡−1 = 𝑠′ 𝑃 𝑥𝑡 𝑦𝑡 = 𝑠]

In MEMM, we infer the best label sequence via the conditional
probability argmaxy𝑃 ȁ𝑦 𝑥 using the recurrence:

vt(s) = maxy1,𝑦2,…,𝑦𝑡−1𝑃 ȁ𝑦1, 𝑦2, … , 𝑦𝑡−1, 𝑦𝑡 = 𝑠 𝑥

vt s = max𝑠′∈𝑌(𝑣𝑡−1 𝑠′ 𝑃 ȁ𝑦𝑖 = 𝑠 𝑦𝑖−1 = 𝑠′, 𝑥)

𝑝∗ = max𝑠∈𝑌𝑣𝑛 𝑆

The Label Bias Problem in MEMM

The scores in the bracket
represent the ability to go
from one state to another
state given the
observation, i.e.,
exp(σ𝑖=1

𝐾 𝑤𝑖
𝑦𝑡𝑓𝑖(𝑦𝑡−1, 𝑥))

Based on these scores, the
best paths should be: 2 ->
2 -> 2 or 2 -> 2 -> 5

However, if we normalize
at each state to obtain the
probabilities, the best
paths should be: 1 -> 1 -> 1
or 1 -> 1 -> 2

0.4 (20) 0.5 (10)

0.2 (100) 0.3 (150)

0.2 (100)

0.2 (100)

0.2 (100)

0.2 (100)

0.6 (30)

0.3 (150)

0.1 (50)

0.1 (50)

0.2 (100)
0.5 (10)

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3

1 -> 1 -> 1, 1 -> 1 -> 2: 0.4 * 0.5 = 0.2
2 -> 2 -> 2, 2 -> 2 -> 5: 0.2 * 0.3 = 0.06

The Label Bias Problem in MEMM

This is because the
prediction at each
state/word is modeled by a
probability, thus
necessitating the
normalization at each state
(local normalization)

So, we want to avoid the
normalization at each step
and only normalize once
over the entire input
sequence to obtain the
overall probability 𝑃(𝑦ȁ𝑥)
(global normalization),
leading to Conditional
Random Fields (CRF)

0.4 (20) 0.5 (10)

0.2 (100) 0.3 (150)

0.2 (100)

0.2 (100)

0.2 (100)

0.2 (100)

0.6 (30)

0.3 (150)

0.1 (50)

0.1 (50)

0.2 (100)
0.5 (10)

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3

An Example of Label Bias
Consider a simple MEMM for person and location names, in which
states are (all names are two tokens):

◦ other

◦ B-person and e-person for person names

◦ B-locn and e-locn for location names

Corpus:
◦ Harvey Ford : person 9 times, location 1 time

◦ Harvey Park: location 9 times, person 1 time

◦ Myrtle Ford: person 9 times, location 1 time

◦ Myrtle Park: location 9 times, person 1 time

Second token a good indicator of person vs. location

An Example of Label Bias

Conditional probabilities:
◦ p(b-person | other, w = Harvey) = 0.5

◦ p(b-locn | other, w = Harvey) = 0.5

◦ p(b-person | other, w = Myrtle) = 0.5

◦ p(b-locn | other, w = Myrtle) = 0.5

◦ p(e-person | b-person, w = Ford) = 1

◦ p(e-person | b-person, w = Park) = 1

◦ p(e-locn | b-locn, w = Ford) = 1

◦ p(e-locn | b-locn, w = Park) = 1

Role of second token in distinguishing person vs. location completely lost

Problem: probabilities of outgoing arcs normalized separately for each state: the
“label bias” problem

Corpus:
Harvey Ford : person 9 times, location 1 time
Harvey Park: location 9 times, person 1 time
Myrtle Ford: person 9 times, location 1 time
Myrtle Park: location 9 times, person 1 time

Conditional Random Fields (CRF)

Conditional Random Fields (CRFs) address this problem:
◦ MEMMs use a per-state exponential model

◦ CRFs have a single exponential model for the joint probability of the entire label
sequence

Graphical comparison among HMMs, MEMMs and CRFs

From Lafferty et al.

Conditional Random Fields (CRF)
Both MEMM and CRF directly model 𝑃 ȁ𝑦 𝑥

MEMM:

𝑃 ȁ𝑦 𝑥; 𝜃 =ෑ

𝑡=1

𝑛

𝑃 𝑦tȁ𝑦𝑡−1, 𝜒; 𝜃

CRF:

𝑃 ȁ𝑦 𝑥; 𝜃 =
exp Φ 𝑥, 𝑦 𝑇𝜃

σ𝑦′∈𝑌 exp Φ 𝑥, 𝑦′ 𝑇𝜃

Conditional Random Fields (CRF)
𝑃 ȁ𝑦 𝑥; 𝜃 =

exp Φ 𝑥,𝑦 𝑇𝜃

𝑦′∈𝑌

exp Φ 𝑥,𝑦′ 𝑇𝜃
=
exp Φ 𝑥,𝑦 𝑇𝜃

𝑍(𝑥)

Where
Φ 𝑥, 𝑦 = [Φ1 𝑥, 𝑦 , … ,Φ𝑘 𝑥, 𝑦 , … ,Φ𝐾(𝑥, 𝑦)]

Φ𝑘 𝑥, 𝑦 =
𝑖=1,…,𝑛

𝜙𝑘(𝑦𝑖−1, 𝑦𝑖 , 𝑥, 𝑖)

with 𝜙𝑘(𝑦𝑖−1, 𝑦𝑖 , 𝑥, 𝑖) is a function to capture some features of the input
sentence 𝑥 and the transition from state 𝑦𝑖−1 to state 𝑦𝑖 at step 𝑖

◦ i.e., only capturing features at the edge and node level and similar to those we
use for MEMM

The element of 𝜃 corresponding to Φ𝑘 𝑥, 𝑦 is 𝜃𝑘

Conditional Random Fields (CRF)

𝑃 𝑦 𝑥; 𝜃 =
exp(Φ(𝑥,𝑦)𝑇𝜃)

σ
𝑦′∈𝑌

exp(Φ(𝑥,𝑦′)𝑇𝜃)
=

exp(Φ(𝑥,𝑦)𝑇𝜃)

𝑍(𝑥)

The normalizing factor 𝑍(𝑥) involve summing over an exponential number
of terms (all the possible label sequence for the input sentence -- ȁ𝑌ȁ𝑛)

Using dynamic programming (i.e., the forward algorithm), we can the
normalization in 𝑂(𝑛ȁ𝑌ȁ2)

1 2 3 4 5
observation

1

2

3

state

𝑀𝑖 s
′, 𝑠 = exp(

𝑘=1..𝐾

𝜃𝑘 𝜙𝑘(𝑠
′, 𝑠, 𝑥, 𝑖)Score at one edge

Conditional Random Fields (CRF)

𝛼𝑖(𝑠): the total score for the length-𝑖 subpaths of the paths whose 𝑖-th state is 𝑠.

Initialization:

𝛼1 𝑠 = exp(σ𝑘=1..𝐾 𝜃𝑘 𝜙𝑘(𝑠𝑡𝑎𝑟𝑡, 𝑠, 𝑥, 1)

Recurrence:

𝛼𝑖 𝑠 = σ𝑠′∈𝑌 𝛼𝑖−1 𝑠′ 𝑀𝑖(𝑠
′, 𝑠)

Final normalization score:

𝑍 𝑥 = σ𝑠∈𝑌 𝛼𝑛(𝑠)

1 2 3 4 5
observation

1

2

3

state

CRF Training
Loss function:

𝐿 𝜃 = − log𝑃 𝑦 𝑥; 𝜃 = − log
exp(Φ(𝑥,𝑦)𝑇𝜃)

σ
𝑦′∈𝑌

exp(Φ(𝑥,𝑦′)𝑇𝜃)
= −Φ 𝑥, 𝑦 𝑇𝜃 + log𝑍(𝑥)

In most of the optimization technique for 𝐿(𝜃), we will need to compute its
gradient:

𝜕𝐿(𝜃)

𝜕𝜃𝑘
= - 𝜙𝑘 𝑥, 𝑦 + σ𝑦′∈𝑌

exp(Φ(𝑥,𝑦′)𝑇𝜃)𝜙𝑘 𝑥,𝑦′

𝑍(𝑥)
= −𝜙𝑘 𝑥, 𝑦 + σ𝑦′∈𝑌𝑃(𝑦

′ȁ𝑥)𝜙𝑘 𝑥, 𝑦′

σ𝑦′∈𝑌𝑃(𝑦
′ȁ𝑥)𝜙𝑘 𝑥, 𝑦′ =

σ𝑖=1..𝑛σ𝑠′∈𝑌,𝑠∈𝑌𝜙𝑘(𝑠
′, 𝑠, 𝑥, 𝑖) σ

𝑦′:𝑦𝑖−1
′ =𝑠′,𝑦𝑖

′=𝑠
𝑃(𝑦′ȁ𝑥)

Using this factorization, we can compute this quantity in 𝑂(𝑛ȁ𝑌ȁ2) using the
forward-backward algorithm

For details, see: Collins, “The Forward-Backward Algorithm”

Re-arrange variables for DP

Viterbi decoding for CRF
𝑣𝑡 𝑠 = 𝑚𝑎𝑥𝑦1,𝑦2,…,𝑦𝑡−1𝑃(𝑦1, 𝑦2, … , 𝑦𝑡−1, 𝑦𝑡 = 𝑠ȁ𝑥)

Initialization:

𝑣1 𝑠 = σ𝑘=1..𝐾 exp(𝜃𝑘𝜙𝑘(𝑠𝑡𝑎𝑟𝑡, 𝑠, 𝑥, 1))

Recurrence:

𝑣𝑖 𝑠 = 𝑚𝑎𝑥𝑠′∈𝑌[𝛼𝑖−1 𝑠′ 𝑀𝑖 𝑠
′, 𝑠]

Best score:

𝑝∗ = 𝑚𝑎𝑥𝑠∈𝑌 𝑣𝑛 𝑠

Recurrent Neural Networks (RNN)

𝑅: recurrence function

𝑂: output function

𝑠𝑖, 𝑦𝑖: hidden vector and output vector at step 𝑖.

𝜃: model parameters (to be learned during training)

Input vectors for words
(e.g., one-hot or distributed vectors)

Initial
vector
(zero)

Goldberg, 2017

Recurrent Neural Networks (RNN)
At each step, the 𝑅 function takes two inputs (i.e., the hidden vector from the
previous step 𝑠𝑡−1 and the input vector from the current step 𝑥𝑡) to compute
the hidden vector for the current step 𝑠𝑡 :

𝑠𝑡 = 𝑅(𝑠𝑡−1, 𝑥𝑡)

The hidden vector 𝑠𝑡 can be used as the feature vector to make a prediction
about the label for 𝑥𝑡 (i.e., POS or NER). Essentially, we use the O function to
transform 𝑠𝑡 into a score vector 𝑜𝑡 whose dimensions quantify the likelihood
that 𝑥𝑡 has the corresponding labels (i.e., 𝑜𝑡 = ȁ𝑌ȁ):

𝑜𝑡 = 𝑂(𝑠𝑡𝑊
𝑜 + 𝑏𝑜)

𝑜𝑡 can be transformed into a probability distribution via the softmax function:
𝑑𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜𝑡)

In the simplest version (i.e., vanilla RNN), 𝑂 can be just the identity function
(i.e., 𝑂(𝑥) = 𝑥), while 𝑅 can be a simple linear transformation followed by a
non-linear function:

𝑠𝑡 = 𝜎(𝑠𝑡−1𝑊
𝑠 + 𝑥𝑡𝑊

𝑥 + 𝑏𝑠)

𝑊𝑥

𝑊𝑠

𝑥𝑡

𝑊𝑜

𝑠𝑡−1

𝑠𝑡

𝑊𝑠

𝑜𝑡

𝑑𝑡

Recurrent Neural Networks (RNN)
The model parameters: 𝜃 = {𝑊𝑠,𝑊𝑥 , 𝑏𝑠,𝑊𝑜, 𝑏𝑜}

The recurrence nature (i.e., using the hidden vector from the
previous step for the current computation) allows each hidden
vector 𝑠𝑡 to capture information about all the words before 𝑡: 𝑠𝑡 =
𝑓(𝑠0, 𝑠1, … , 𝑠𝑡−1)

The use of the same parameters 𝑊𝑠,𝑊𝑥 , 𝑏𝑠 in the recurrence
function 𝑅 causes the gradient vanishing problem (i..e, gradient
becomes small in long sentences so the models cannot learn)

In practice, the LSTM cell is often used for R to mitigate this
problem.

𝑊𝑥

𝑊𝑠

𝑥𝑡

𝑊𝑜

𝑠𝑡−1

𝑠𝑡

𝑊𝑠

𝑜𝑡

LSTM units allow

gradients to also
flow unchanged

Training RNN

Bidirectional RNN

Liverpool suffered an upset first home league defeat of the season, beaten 1-0
by a Guy Whittingham goal for Sheffield Wednesday.

A city or a football team?

• The information on the left is not enough to predict the
label for the current word.

Bidirectional RNN

𝑠𝑖
𝑓
= 𝜎(𝑠𝑖−1

𝑓
𝑊𝑠

𝑓
+ 𝑥𝑖𝑊𝑥

𝑓
+ 𝑏𝑓)

𝑠𝑖
𝑏 = 𝜎(𝑠𝑖−1

𝑏 𝑊𝑠
𝑏 + 𝑥𝑖𝑊𝑥

𝑏 + 𝑏𝑏)

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑖
𝑓
, 𝑠𝑖

𝑏 𝑊𝑜 + 𝑏𝑜), 𝜃 = [𝑊𝑠
𝑓
,𝑊𝑥

𝑓
, 𝑏𝑓,𝑊𝑠

𝑏 ,𝑊𝑥
𝑏 , 𝑏𝑏,𝑊𝑜 , 𝑏𝑜]

Forward
RNN

Backward
RNN

So, one hidden vector has access to the context information
across the whole sentence

Bidirectional RNN

Go Deeper (Stacked RNN)

Incorporating CRF
RNN makes prediction for words independently

◦ The features/representations share the parameters

◦ But the output predictions are independent

We want to capture the dependencies between the output labels, i.e., I_PER can
only be preceded by B_PER

◦ The later predictions can influence the prior predictions (e.g., fixing prior’s error)

CRF can achieve this via the global normalization of the label sequence
probabilities

Idea: Incorporate CRF as the final layer in the RNN models for sequence labeling

Incorporating CRF

Huang et al. 2015, “Bidirectional LSTM-CRF Models for Sequence Tagging

Incorporating CRF

Ma and Hovy (2016), “End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF”

Incorporating CRF

