
Revisit the NLP Pipeline
Bonan Min

bonanmin@gmail.com

Some slides are based on class materials from Ralph Grishman

The Pipeline

Extracting information from natural language text is a
complex process

We have been able to make it manageable by dividing it
into many separate stages, each realized by its own
(relatively simple) model

token
izer

name
tagger

POS
tagger

parser coref IE

Pipeline Problems
The pipeline raises two serious problems:

Error compounding
◦ because stages are computed separately

Need to define intermediate representations
◦ laborious

◦ suboptimal

◦ task-specific

Introducing Errors
Each stage introduces some errors because

Model is an oversimplification of linguistic phenomenon

(Hand-prepared) training data may be noisy

Typically 10% error rate per stage
◦ error rates range from 3% (POS) to 15% (name tagging)

Compounding Errors

Errors in output of stage =
errors due to faulty input +
errors introduced by stage

Final output error rate > 50% (Is this useful?)

10% 20% 30% 40% 50% 60%

token
izer

name
tagger

POS
tagger

parser coref IE

Helpful Feedback

We will reduce the error rate by in effect providing feedback
from later stages to earlier ones

Example: “Roger Park began to work for IBM.”

NE tagger says “Roger Park” is most likely a location but could
also be a person

relation extraction pattern (in IE stage) indicates a preference
for “person works” over “location works”, fixing the error

10% 20% 30% 40% 50% 60%

token
izer

name
tagger

POS
tagger

parser coref IE

Joint Inference
To perform joint inference between stages A and B,
◦ we define an objective function combining A and B

◦ we search the combined space of A and B
◦ where possible B outputs may depend on A output

◦ seeking to maximize combined objective

◦ much larger search space than with independent components

More Examples
“Meet me in front of the White House.”

◦ “White House” may refer to the building or the organization therein
◦ 1-token context used by NE doesn’t help resolve ambiguity

◦ The relation extractor determines this is a reference to building

“Ford employs 4000 in Detroit.”
◦ The event extractor determines that 4000 is of type people

Implementation and Benefits
Implementations

◦ A joint framework based on structured prediction so that the local predictions
can be mutually improved
◦ Extracts event triggers and arguments together (Li et al., ACL 2013)

◦ Extract entity mentions and relations together (Li et al., ACL 2014)

◦ Efficient beam search; maintaining multiple hypothesis along the pipeline

Benefit: For 2 or 3 stages, reductions of 2 - 3% (absolute) in error rate are
reported

◦ can only correct errors which change a valid (more likely) input to second stage
to an invalid (less likely) input

Cost
Much larger space to search

◦ Full search of product space infeasible

◦ Joint token-by-token scan updating multiple models (NE, relation, event)
concurrently
◦ use beam search to limit search space

◦ follow only top n hypotheses at each token

OR

◦ follow only hypotheses within m% of best hypothesis

OR

◦ Build graphical model connecting stages
◦ soft constraints linking stages

Deep Learning
Instead of training separate models for each stage and then coupling
them, can we train a unified model

◦ to perform the entire analysis starting from a sequence of tokens

◦ To tie all tasks together with multi-layer neural networks

A more powerful model
◦ A multi-level network can represent a wide range of models

◦ compared to the log-linear models

Example 1
Joint Trigger and Argument Extraction via RNN (Nguyen et al., NAACL-HLT 2016)

Example 2
End-to-end neural coreference resolution (Lee et al., EMNLP 2017)

Span representation
Coreference

Example 3
Neural Joint Modeling of Entities and Events (Nguyen and Nguyen, AAAI
2019)

Multi-task Learning in DNN
Related tasks:

◦ POS, Entity recognition, coreference, relation extraction, events extraction,
event argument attachment, Semantic Role Labeling (SRL), etc.

Hard parameter sharing

Soft parameter sharing

More Successes
Improved speech recognition

◦ combining acoustic and language models

Integrated NLP pipelines
◦ Natural Language Processing (Almost) from Scratch (Collobert et al JMLR 2011)

◦ competitive performance with less feature engineering

Better relation extraction
◦ with less feature engineering

Better machine translation

The Future?
Robust systems

Little or no feature engineering

Large-scale self-supervised LM pre-training + task-specific tuning
◦ BERT is everywhere

Input: characters
◦ Zhang et al., Character-level convolutional networks for text classification.

NIPS 2015.

Output: triples linked to KB
◦ Lots of work in (entity) linking, knowledge representation, KB completion

