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The Pipeline

Extracting information from natural language text is a 
complex process

We have been able to make it manageable by dividing it 
into many separate stages, each realized by its own 
(relatively simple) model
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Pipeline Problems
The pipeline raises two serious problems:

Error compounding
◦ because stages are computed separately

Need to define intermediate representations
◦ laborious

◦ suboptimal

◦ task-specific



Introducing Errors
Each stage introduces some errors because

Model is an oversimplification of linguistic phenomenon

(Hand-prepared) training data may be noisy

Typically 10% error rate per stage
◦ error rates range from 3% (POS) to 15% (name tagging)



Compounding Errors

Errors in output of stage =
errors due to faulty input +
errors introduced by stage

Final output error rate > 50% (Is this useful?)
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Helpful Feedback

We will reduce the error rate by in effect providing feedback 
from later stages to earlier ones

Example:  “Roger Park began to work for IBM.”

NE tagger says “Roger Park” is most likely a location but could 
also be a person

relation extraction pattern (in IE stage) indicates a preference 
for “person works” over “location works”, fixing the error
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Joint Inference
To perform joint inference between stages A and B,
◦ we define an objective function combining A and B

◦ we search the combined space of A and B
◦ where possible B outputs may depend on A output

◦ seeking to maximize combined objective

◦ much larger search space than with independent components



More Examples
“Meet me in front of the White House.”

◦ “White House” may refer to the building or the organization therein
◦ 1-token context used by NE doesn’t help resolve ambiguity

◦ The relation extractor determines this is a reference to building

“Ford employs 4000 in Detroit.”
◦ The event extractor determines that 4000 is of type people



Implementation and Benefits
Implementations

◦ A joint framework based on structured prediction so that the local predictions 
can be mutually improved
◦ Extracts event triggers and arguments together (Li et al., ACL 2013)

◦ Extract entity mentions and relations together (Li et al., ACL 2014)

◦ Efficient beam search; maintaining multiple hypothesis along the pipeline

Benefit: For 2 or 3 stages, reductions of 2 - 3% (absolute) in error rate are 
reported

◦ can only correct errors which change a valid (more likely) input to second stage 
to an invalid (less likely) input



Cost
Much larger space to search

◦ Full search of product space infeasible

◦ Joint token-by-token scan updating multiple models (NE, relation, event) 
concurrently
◦ use beam search to limit search space

◦ follow only top n hypotheses at each token

OR

◦ follow only hypotheses within m% of best hypothesis

OR

◦ Build graphical model connecting stages
◦ soft constraints linking stages



Deep Learning
Instead of training separate models for each stage and then coupling 
them, can we train a unified model 

◦ to perform the entire analysis starting from a sequence of tokens

◦ To tie all tasks together with multi-layer neural networks

A more powerful model
◦ A multi-level network can represent a wide range of models

◦ compared to the log-linear models



Example 1
Joint Trigger and Argument Extraction via RNN (Nguyen et al., NAACL-HLT 2016)



Example 2
End-to-end neural coreference resolution (Lee et al., EMNLP 2017)

Span representation
Coreference



Example 3
Neural Joint Modeling of Entities and Events (Nguyen and Nguyen, AAAI 
2019) 



Multi-task Learning in DNN
Related tasks: 

◦ POS, Entity recognition, coreference, relation extraction, events extraction, 
event argument attachment, Semantic Role Labeling (SRL), etc.

Hard parameter sharing

Soft parameter sharing



More Successes
Improved speech recognition

◦ combining acoustic and language models

Integrated NLP pipelines
◦ Natural Language Processing (Almost) from Scratch (Collobert et al JMLR 2011)

◦ competitive performance with less feature engineering

Better relation extraction
◦ with less feature engineering

Better machine translation



The Future?
Robust systems

Little or no feature engineering

Large-scale self-supervised LM pre-training + task-specific tuning
◦ BERT is everywhere

Input:  characters
◦ Zhang et al., Character-level convolutional networks for text classification. 

NIPS 2015.

Output:  triples linked to KB
◦ Lots of work in (entity) linking, knowledge representation, KB completion


