
Neural Machine 
Translation
Bonan Min

bonanmin@gmail.com

Some slides are based on class materials from Thien Huu Nguyen, Yifan He, Dan Jurasky, 
Raymond Mooney, Chris Manning and others



Neural Machine Translation (NMT)
A huge breakthrough in NLP appears in 2014.

Neural machine translation is invented that:
◦ Significantly improves the performance of MT
◦ Avoids the feature engineering in decades

NMT is the flagship task for NLP Deep Learning
◦ NMT research has pioneered many of the recent 

innovations of NLP Deep Learning

Devlin et al., Fast and Robust Neural Network Joint Models for Statistical Machine Translation. ACL 2014
Cho et al., Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. EMNLP 2014



Neural Machine Translation
Neural Machine Translation (NMT) is a way to do Machine 
Translation with a single neural network

The neural network architecture is called sequence-to-
sequence(aka seq2seq) and it involves two RNNs.



Neural Machine Translation



Sequence-to-sequence is Versatile!
Sequence-to-sequence is useful for more than just MT

Many NLP tasks can be phrased as sequence-to-sequence:
◦ Summarization(long text → short text)

◦ Dialogue(previous utterances → next utterance)

◦ Parsing(input text → output parse as sequence)

◦ Code generation (natural language → Python code)



Neural Machine Translation
The sequence-to-sequence model is an example of a Conditional Language 
Model.

◦ Language Model because the decoder is predicting the next word of the 
target sentence 𝑦

◦ Conditional because its predictions are also conditioned on the source 
sentence 𝑥

NMT directly compute 𝑃(𝑦|𝑥):

Question: How do we train a NMT system?

Answer: obtain a large parallel corpus



Training an NMT system

Seq2seq is optimized as a single system.
Backpropagation operates “end-to-end”.



Greedy Decoding
Decoding: finding the best sentence in the target language for a given source 
sentence based on the current model

Greedy decoding: taking argmax (the most probable word) on each step of 
the decoder

What are the problems with this approach?



Problems With Greedy Decoding
Greedy decoding has no way to undo decisions! 
◦ Input: il a m’entarté (he hit me with a pie)

→ he ____

→ he hit ____

→ he hit a____ (whoops! no going back now...)

How to fix this?



Exhaustive Search Decoding
Ideally we want to find a (length 𝑇) translation 𝑦 that maximizes:

We could try computing all possible sequences 𝑦
◦ This means that on each step 𝑡 of the decoder, we’re tracking 
𝑉𝑡 possible partial translations, where 𝑉 is vocab size

◦ This 𝑂(𝑉𝑇) complexity is far too expensive



Beam Search Decoding
Core idea: On each step of decoder, keep track of the 𝑘 most 
probable partial translations (which we call hypotheses)
◦ 𝑘 is the beam size (in practice around 5 to 10)

A hypothesis has a score which is its log probability:

◦ Scores are all negative, and higher score is better

◦ We search for high-scoring hypotheses, tracking top k on each step

Beam search is not guaranteed to find optimal solution

But much more efficient than exhaustive search



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

Calculate prob dist
of next word



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

Take top 𝑘 words 
and compute scores

-0.7 = log PLM(he|<START>)

-0.9 = log PLM(I|<START>)



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

-0.7

-0.9

-1.7 = log PLM(hit|<START> he) + -0.7

-2.9 = log PLM(struck|<START> he) + -0.7

-1.6 = log PLM(was|<START> I) + -0.9

-1.8 = log PLM(got|<START> I) + -0.9

For each of the 𝑘 hypotheses, find top 
𝑘 next words and calculate scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

Of these 𝑘2 hypotheses, just keep 
𝑘 with highest scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8 = log PLM(a |<START> he hit) + -1.7

-2.5 = log PLM(me |<START> he hit) + -1.7

-2.9 = log PLM(hit |<START> I was) + -1.6

-3.8 = log PLM(struck |<START> I was) + -1.6

For each of the 𝑘 hypotheses, find 
top 𝑘 next words and calculate 

scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

Of these 𝑘2 hypotheses, just keep 
𝑘 with highest scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

For each of the 𝑘 hypotheses, find 
top 𝑘 next words and calculate 

scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

Of these 𝑘2 hypotheses, just keep 
𝑘 with highest scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

in

with

a

one

-4.8

-4.5

-3.7

-4.3

For each of the 𝑘 hypotheses, find 
top 𝑘 next words and calculate 

scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

in

with

a

one

-4.8

-4.5

-3.7

-4.3

Of these 𝑘2 hypotheses, just keep 
𝑘 with highest scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

in

with

a

one

-4.8

-4.5

-3.7

-4.3

pie

tart

pie

tart

-4.3

-4.6

-5.0

-5.3

For each of the 𝑘 hypotheses, find 
top 𝑘 next words and calculate 

scores



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

in

with

a

one

-4.8

-4.5

-3.7

-4.3

pie

tart

pie

tart

-4.3

-4.6

-5.0

-5.3

This is the top-scoring hypothesis!



Beam Search Decoding: Example
Beam size = k = 2. The numbers = 𝑠𝑐𝑜𝑟𝑒 𝑦1, … , 𝑦𝑡 = σ𝑖=1

𝑡 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)

<START>

he

I

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

in

with

a

one

-4.8

-4.5

-3.7

-4.3

pie

tart

pie

tart

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain 
the full hypothesis



Beam Search Decoding: 
Stopping Criterion
In greedy decoding, usually we decode until the model produces 
a <END> token
◦ For example: <START> he hit me with a pie <END>

In beam search decoding, different hypotheses may produce 
<END> tokens on different timesteps:
◦ When a hypothesis produces <END>, that hypothesis is complete. 

◦ Place it aside and continue exploring other hypotheses via beam search.

Usually we continue beam search until:
◦ We reach timestep 𝑇 (where 𝑇 is some pre-defined cutoff), or

◦ We have at least 𝑛 completed hypotheses (where 𝑛 is pre-defined cutoff)



Beam Search Decoding: 
Finishing Up
We have our list of completed hypotheses.

How to select top one with highest score?

Each hypothesis on our list has a score

Problem with this: longer hypotheses have lower scores

Fix: Normalize by length. Use this to select top one instead:



Compared To SMT, NMT Has 
Many Advantages
Better performance
◦ More fluent

◦ Better use of context

◦ Better use of phrase similarities

A single neural network to be optimized end-to-end
◦ No subcomponents to be individually optimized

Requires much less human engineering effort
◦ No feature engineering

◦ Same method for all language pairs



Disadvantages of NMT
Compared to SMT:

NMT is less interpretable 
◦ Hard to debug

NMT is difficult to control
◦ For example, can’t easily specify rules or guidelines for translation

◦ Safety concerns!



MT Progress Over Time



NMT: The Biggest Success Story Of 
NLP Deep Learning

Neural Machine Translation went from a fringe research 
activity in 2014 to the leading standard method in 2016
◦ 2014: First seq2seq paper published

◦ 2016: Google Translate switches from SMT to NMT

This is amazing!
◦ SMT systems, built by hundreds of engineers over many 

years, outperformed by NMT systems trained by a 
handful of engineers in a few months



Problems Of Sequence-to-Sequence



Sequence-to-sequence: The 
Bottleneck Problem



Attention Mechanism
Attention provides a solution to the bottleneck problem.

Core idea: on each step of the decoder, use direct connection to 
the encoder to focus on a particular part of the source 
sequence

First we will show via diagram (no equations), then we will show 
with equations

Dzmitry Bahdanau, et al.,  Neural Machine Translation By Jointly Learning To Align And Translate. ICLR 2015



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Sequence-to-sequence With Attention



Attention In Equations
We have encoder hidden states 𝐻 = ℎ1, … , ℎ𝑁 ∈ ℝℎ

On timestep t, we have decoder hidden state 𝑠𝑡 ∈ ℝℎ

We get the attention scores 𝑒𝑡 for this step:
𝑒𝑡 = 𝑠𝑡ℎ1, … , 𝑠𝑡 ℎ𝑁 ∈ ℝ𝑁

We take softmax to get the attention distribution 𝛼𝑡 for this step (this is a 
probability distribution and sums to 1)

𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡) ∈ ℝ𝑁

We use 𝛼𝑡 to take a weighted sum of the encoder hidden states to get the 
attention output 𝑎𝑡:

𝑎𝑡 = ෍

𝑖=1

𝑁

𝛼𝑖
𝑡ℎ𝑖 ∈ ℝℎ

Finally we concatenate the attention output 𝑎𝑡 with the decoder hidden 
state 𝑠𝑡 and proceed as in the non-attention seq2seq model:

[𝑎𝑡; 𝑠𝑡] ∈ ℝ2ℎ



Benefit Of Attention
Attention significantly improves NMT performance

◦ It’s very useful to allow decoder to focus on certain parts of the source

Attention solves the bottleneck problem
◦ Attention allows decoder to look directly at source; bypass bottleneck

Attention helps with vanishing gradient problem
◦ Provides shortcut to faraway states

Attention provides some interpretability
◦ By inspecting attention distribution, we can see what the decoder was focusing on
◦ We get (soft) alignment for free!
◦ This is cool because we never explicitly trained an alignment system
◦ The network just learned alignment by itself

Attention is a general Deep Learning technique
◦ We can use it in many architectures and problems



Some Attention Variants
We need to compute the attention scores: 

𝑒𝑡 = 𝑠𝑡ℎ1, … , 𝑠𝑡 ℎ𝑁 ∈ ℝ𝑁

Basic dot-product attention: 𝑒𝑖
𝑡 = 𝑠𝑡ℎ𝑖 ∈ ℝ

◦ Note: this assumes the same dimension for 𝑠𝑡 and ℎ𝑖
◦ This is the version we mentioned earlier

Multiplicative attention: 𝑒𝑖
𝑡 = 𝑠𝑡𝑊ℎ𝑖 ∈ ℝ

◦ Where 𝑊 ∈ ℝ𝑑2×𝑑1 is a learnable weight matrix

Addictive attention:𝑒𝑖
𝑡 = 𝑣 tanh(𝑊1𝑠𝑡 +𝑊2ℎ𝑖) ∈ ℝ

◦ Where 𝑊1 ∈ ℝ𝑑3×𝑑1 , 𝑊2 ∈ ℝ𝑑3×𝑑2, and 𝑣 ∈ ℝ𝑑3 are 
learnable weight matrices and vectors



Bidirectional Encoding



So Is Machine Translation Solved?
Nope!

Many difficulties remain:
◦ Out-of-vocabulary words

◦ Domain mismatch between train and test data

◦ Maintaining context over longer text

◦ Low-resource language pairs

Has AI surpassed humans at translation? Not even close!

https://www.skynettoday.com/editorials/state_of_nmt

https://www.skynettoday.com/editorials/state_of_nmt


So Is Machine Translation Solved?
Nope!

Using common sense is still hard



So Is Machine Translation Solved?
Nope!

NMT picks up biases in training data



So Is Machine Translation Solved?
Nope!

Uninterpretable systems do strange things



Out-of-vocabulary Words
At translation time, we regularly encounter novel words:
◦ names: Barack Obama
◦ morph. complex words: Hand|gepäck|gebühr(’carry-on bag fee’)
◦ numbers, URLs etc.

Solutions:
◦ copy unknown words [Jean et al., 2015, Luong et al., 2015b, 

Gülçehre et al., 2016] → works for names (if alphabet is shared), 
and 1-to-1 aligned words

◦ use subword units (characters or others) for input/output 
vocabulary

→model can learn translation of seen words on subword level

→model can translate unseen words if translation is transparent 
(following the target language’s grammar, syntax and idiom)



Transparent Translations
Some translations are semantically/phonologically transparent

→no memorization needed; can be translated via subword units

Morphologically complex words (e.g. compounds):
◦ solar system (English)

◦ Sonnen|system (German)

◦ Nap|rendszer (Hungarian)

Named entities:
◦ Barack Obama (English; German) 

◦ バラク・オバマ(ba-ra-ku o-ba-ma) (Japanese)

Cognates and loanwords:
◦ claustrophobia (English)

◦ Klaustrophobie (German)

Many rare/unseen words belong to one of these categories



Subword Neural Machine Translation
Flat representation (Sennrich et al., 2015b, Chung et al., 2016)

◦ sentence is a sequence of subword units

Hierarchical representation (Ling et al., 2015, Luong and Manning, 2016)

◦ sentence is a sequence of words

◦ words are a sequence of subword units

open question: should attention be on level of words or subwords?



Subword Neural Machine Translation
Choice of subword unit
◦ character-level: small vocabulary, long sequences

◦ morphemes (?): hard to control vocabulary size

◦ hybrid choice: shortlist of words, subwords for rare words

◦ variable-length character n-grams: byte-pair encoding (BPE)

Which subword segmentation is best choice in terms 
of efficiency and effectiveness?



Byte Pair Encoding For Word Segmentation

Word segmentation with byte-pair encoding [Sennrich et al., 
2015b]
◦ actually a merge algorithm, starting from characters

◦ iteratively replace most frequent pair of symbols (’A’,’B’) with ’AB’

◦ apply on dictionary, not on full text (for efficiency)

◦ output vocabulary: original vocabulary + one symbol per merge



Byte Pair Encoding For Word Segmentation



Why Byte Pair Encoding (BPE)?
Good trade-off between vocabulary size and text length.

learned operations can be applied to unknown words→ open-
vocabulary



Byte Pair Encoding For Word Segmentation



Transformer Architecture for MT (Recap)
A composition of many multi-head attention operations, originally 
designed for machine translation with the encoder and decoder networks 
(Vaswani et al., 2017).

Vaswani et al. Attention Is All You Need. NIPS 2017.

English
Foreign language



Transformer Architecture for MT (Recap)
Encoder is composed of N layers; each of which has two sublayers (a 
multi-head attention and feed forward network) with residual 
connections around them.

Vaswani et al. Attention Is All You Need. NIPS 2017.



Transformer Architecture for MT (Recap)
Decoder is designed similarly to Encoder except that it has a new sublayer 
called Masked Multi-Head Attention to ensure that predictions for position 𝑖
can only depends on previous positions (for generate a translated sentence in 
Machine Translation).

Vaswani et al. Attention Is All You Need. NIPS 2017.



Transformer Architecture for MT (Recap)

The masking schema in Transformer Decoder (multiplied to 
the attention matrix directly):

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Masked Multi-Head Attention 

Using the mask, word at position 10 is only 
allowed to attend to words at position 0-9

http://nlp.seas.harvard.edu/2018/04/03/attention.html


Transformer Architecture for MT (Recap)

Evaluation


