Evaluation Metrics

Bonan Min

bonanmin@gmail.com

Some slides are based on class materials from Thien Huu Nguyen, Dan Jurafsky, James H. Martin

Evaluation

Data: labeled examples, e.g. emails marked spam/not-spam

- Training set
- Held out /Development (dev) set
- Test set
- Can also do cross-validation over multiple splits
 - Pool results over each split
 - Compute average dev/test set result

Features: attribute-value pairs which characterize each *X*

These sets are disjoint!

Evaluation

Accuracy: fraction of instances predicted correctly

Accuracy can be Misleading

• For tasks where one tag predominates, accuracy can overstate performance

- > Task: classify emails as spam or not-spam
- > Accuracy: the fraction of emails in the test set that are correctly predicted
- It's easy to build a high-accuracy "majority class" classifier when non-spam emails dominate the dataset
- > But we don't really care about the ham emails. We want
 - > An evaluation measures that focus directly on the spam emails.

So, we use the confusion matrix:

- Accuracy = (TN + TP) / total = (50+100)/165 = .91
- Precision (P) = % predicted examples that are correct

= TP / (TP + FP) = 100 / (100 + 10) = .91

• Recall (R) = % of correct examples that are selected

= TP / (TP + FN) = 100 / (100 + 5) = .95

• F1 = 2PR/(P+R) – geometric mean of P and R

	Predicted: Predicted:		
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Evaluation with More Than Two Classes

Confusion matrix: for each pair of classes $\langle c_1, c_2 \rangle$, how many documents from c_1 were incorrectly assigned to c_2 ?

Docs in test set	Assigned UK	Assigned poultry	Assigned wheat	Assigned coffee	Assigned interest	Assigned trade
True UK	95	1	13	0	1	0
True poultry	0	1	0	0	0	0
True wheat	10	90	0	1	0	0
True coffee	0	0	0	34	3	7
True interest	-	1	2	13	26	5
True trade	0	0	2	14	5	10

Recall:

Macroaveraging: compute

Microaveraging: collect

decisions for all classes,

compute confusion table,

evaluate (more preferable if classes are imbalanced)

performance for each class, then average (classes are equal)

•

٠

Fraction of docs in class *i* classified correctly:

$\frac{c_{ii}}{\displaystyle\sum_{j} c_{ij}}$

Precision:

Fraction of docs assigned class *i* that are actually about class *i*:

Accuracy: (1 - error rate)

Fraction of docs classified correctly:

Micro- vs. Macro-Averaging: An Example

Class 1		Class 2			_	Micro Ave. Table			
	Truth:	Truth:		Truth:	Truth:			Truth:	Truth:
	yes	no		yes	no			yes	no
Classifier: yes	10	10	Classifier: yes	90	10		Classifier: yes	100	20
Classifier: no	10	970	Classifier: no	10	890		Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Microaveraged score is dominated by score on common classes

Some Datasets for Text Classification

Reuters-21578 (<u>http://disi.unitn.it/moschitti/corpora.htm</u>)

20Newsgroups (<u>http://disi.unitn.it/moschitti/corpora.htm</u>)

....

Yelp reviews 2013, 2014, 2015 (<u>http://ir.hit.edu.cn/~dytang/paper/emnlp2015/emnlp-2015-data.7z</u>)