Contextualized
Word Embeddings

Bonan Min

bonanmin@gmail.com

Some slides are based on class materials from Thien Huu Nguyen, Alexander Rush

Recap: Word2vec

Context words: windows of size 2 before and after the center word

INPUT PROJECTION OUTPUT INPUT PROJECTION ouIPUT
Wy_z W2
uy—1 wy—1
SUM

Wes+1 W41

W42 Wi4+2
Continuous Bag of Words (CBOW): Skip-grams (SG):
predicting the center words using predicting the context words using
the context words (P(W¢|Wi—, Wi_1, Wer1, Wig2)) the center word (P(W¢4;|lwy), i € {—2,—1,1,2})

Recap: Word2vec

For each positioni = 1, ..., N, predict the context words within a
window of fixed size m, glven the the center word w;:

= L(0) = l_[1—[P(wij|w;; 6)

1=1 —m<]<m
JEY

The objective/loss function is the (average) negative log likelihood:

—1(0)———7 > log P(wiyjlwi; 0)

=1 —ms<js<m
JEV

The parameters 6 here involve the word vectors we want to learn

Minimizing the loss function amounts to maximizing the predictive
accuracy

Recap: Wovd2vec

000 1
20 15
30 minister
few fve 10 half leader
Six president
two head .
three four sl chairman
several director spokesman
some
many other ;
analyst
executive haday Y
thosethese
all
both

Problem With Word2vec

A single vector is used for a word, neglecting its possibly
multiple meanings (i.e., polysemy)
o e.g., “fire”, “bank”, “present”, etc.

> a simple trick: learn an embedding vector for each meaning (i.e.,
senses in WordNet) of the words, but this assumes the availability of
high-quality word sense disambiguation systems to assign senses to
words in the sentences (not reliable)

o this ignores the contexts of the words in the sentences, thus called

So, we want that can take
the context of the words (i.e., their sentences) into account
to produce vectors for the words

Contextualized Word Embeddings

Idea: the vector for a word should be s eC|f|c to the word’s context, so
we can train models that take the word’s context and produce the word

vector

Questions: How do we train such models? How do we obtain the
training data?

Answer remember language models with RNN? We can train a RNN
%uage model and use the RNN hidden vectors as the contextualized
eddings for the words in the sentences.

> We thus need to (i.e., the parameters) so it can
be applied to new sentences

° The embedding vector for a word will now be conditional on the other words in
the sentences

° The whole language model can be fine-tuned later for specific downstream tasks

Recap: Language Modeling

Language Modeling is the task of predicting what word comes next
given a sequence of previous words.

books
laptop
/ o
———— " exams
eyes

More formally, given a sequence of words x4, x,, ..., X;, compute the
probability distribution of the following word:

P(xi+1 |xi; Xi—1y +ee) xl)

A system that can do this is called a language model

Recap: The RNN Language Model
ctriht y4 = P(xs|the students opened thelr)i 5 J I

output distribution
. .
. .
. .
. .

y; = softmax(Uh; + b,)

hidden states

hi = O-(Whhi—l + Weel- + bl)

hy is the initial hidden state

using LSTM or GRU is more common

.
O .
word embeddings €1 ° €2 o e3 ey
. .
ek B s
words/one-hot vectors the students opened their
x; € {0,1}IVI X1 Xy X3 X,

Contextualized Word Embeddings With

The RNN Language Model
]1(9) t 2(0) + J5(0) + La(®) + =)

Negative log likelihood/probability

Y2)fs 2!

U U U
hs hy
* Use the hidden vectors
h; as the word vectors Wh || Wy
for the words in the
input sentence
/4 |4
* Each vector h; for x; will We ° ¢
involve the context - . - -
information from the ey -t e, o es ¢ e, -t
previous words in the ¢ ¢ ¢ ¢
sentence, thus being o t ¢ o
contextualized words/one-hot vectors TE IE IE TE
14
x; € {0,1}V] X1 Xy X3 X4

Problem With The RNN-based Word Vectors

The word vectors

(i.e., the previous words), what’s about the
context on the right?

The RNN-based model needs to keep the input embedding table
E that is large and assumes a fixed vocabulary. What’s if we have
?

° One trick is to reserve an UNKNOWN word for all the out-of-vocabulary
words, but this might not loose some useful information from the form
of the word (i.e., morphology).

A single RNN layer might not be sufficient to capture the
underlying context information for the input sentences. How’s
about making it deeper (i.e., more layers)?

Deep Contextualized Word Embeddings

ELMo (Embeddings from Language Models) is introduced in (Peters et
al., 2018).

Main ideas:

> Jointly perform both forward and backward language modeling (i.e.,
bidirectional language models)

° Increase the number of RNN layers
° Employ character-level input representations to alleviate the out-of-

vocabulary issue
“I \ Hi |

o Fine tune the model for downstream tasks

Softmax

/hzl,v\

ELMo

LM
hiy
forward LSTM (layer L) backward LSTM (layer L)
’ T : T hlLL is used to predict the next
' ' token x;,q
| T iy | T heM hEM s used to predict the
forward LSTM (layer 2) backward LSTM (layer 2) previous token x;_;
T i T h'M We learn the model parameters
forward LSTM (layer 1) backward LSTM (layer 1) by jointly optimizing the forward
and backward language model
\/ ObJECtlveS
e e e
L ?1 ?2 év) E(IOgP(lelxu ey X5 chnr Hlstm»e)
e~
Char Char Char l + log P(xl—l 1%, oos XN Ocnins Hlstm: 95))
CNN CNN CNN
1 1 1 Note that the parameters for the character-based
X1 X XN CNN and the softmax layer for distributions are shared

ELMo: The character CNN

Max-pooling

Inspired by the gating mechanism in Long

Short Term Memory (LSTM) RNN,

Highway Networks (Srivastava et al., /
2015) allows information to either being
transformed (as usual DNN does) or

carried through in its layers, so that . . .
information flow across layers becomes CNN with mUItlple filters

much easier.

Highway Networks

Allows very deep NN to be trained with
simple SGD.

A A A A A A A A

Character embeddings

s|{tlu|ld|e|[n|t]|s

Fine-tuning with ELMo

The representation vector for input token i is now:
Ry = {e;, hEYM, REM|j = 1, .., L}

i,j°
= {hljlj =0,..,L}
with h; o = e; and h; j = [hl“]W, hLM] otherwise.

We can combine the internal representations via a (trainable, weighted)

linear combination:
L

task _ .,task task
ELMo;™" =y Z Sj " hy
j=0

task are softmax-normalized weights.

with s

The ELMo representations can be used as extra token-level features:
o For input layer: replace the original inpu vector x; with [x;, ELMofaSk]
> For output layer: replace the hidden vector h; with [h;, ELMo}®¥]

ELMo: Evaluation

INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7 1 24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 32/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +0.19 || 90.15 0222 +0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 547 + 0.5 33/6.8%

Table 1 from the original paper.

Problem with ELMo

Problems
> The recurrent computation (sequential) is slow and prevents parallelization.
o The actual application often fixes the ELMo network to avoid the
computational cost
o Thus lacking the ability to fine tune the network for the downstream tasks.
> Although the gated mechanisms in LSTM and GRU can mitigate the gradient

vanishing problem to some extent, it is still very difficult to incorporate the
context information from the very far way words into the representation for

the current word.

Question: How do we address such problem?

Answer: self-attention
> Avoid the recurrent connections to enable parallelization

> The far away words have chance to directly contribute to the current word'’s
representation, depending on their relatedness.

Self-attention

Similar to RNN, self-attention is a sequence-to-sequence
operation: a sequence of vector comes in and a sequence of

vectors goes out.

Vanilla self-attention: let x4, ..., x,, be the input vector sequence.
The output vector sequence vy, ..., V, is Computed by:

= Z_wijxj

WL =X Tx;

exp Wij

2_j €Xp W
http://www.peterbloem.nl/blog/transformers

Wi =

Some Improvements For Self-attention

Query, key and value vectors to differentiate three roles for the input vector
x;: computing the weights for the output vector y;, computing the weights for
the other output vectors y;(j # i), and serving as the part of the weighted
sums for the output vectors:

g, =Wsxi Kki=Wix; vi=W)x

wimaMe
/wij/: softmax(w’.)

Y

Y =) wyv;.
j ™

query

value

Scaling the dot product: to alleviate the large values of the dot product due to
the dimensions of the input vectors: .
W — q; K

ij \/-E
This process is denoted by:
Vi, -, Yn = self _attention(xq, ..., Xp; W, ,Ww,,W,)

Multi-head Self-attention

A single self-attention operation might only focus on one semantic aspect in the
output representation vectors.

Multiple self-attention operations might enable greater representation power to
cover multiple semantic aspects for the representation.

Introducing multiple query, key and value transformation matrices Wy, o W5,
(called attention head and indexed by r) to compute multiple output
representation vectors for each position i in the input.

> The corresponding representation vectors for each position are concatenated and sent
to a feed-forward net to reduce the dimension back those in the original input.

r

Vi, Yn = self _attention(xy, ..., xq; Wy, Wi, W)
= Wly}, .. ,yl 1+ b
lyil = x| = where H is the number of attention heads

Transformer

A composition of many multi-head attention operations, originally
designed for machine translation with the encoder and decoder networks
(Vaswani et al., 2017). Output

Probabilities

Add & Norm
Feed
Forward
' I) I Add & Norm ;
(LAdd & Norm) Mult-Head
Feed Attention
Forward ¥) Nx
Nix I Add & Norm :
f_.l Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
\— J —
Positiqnal D & Positional
Encoding Encoding
Input Qutput
Embedding Embedding
T I «—— Foreign language
. Inputs Outputs
_—
English (shifted right)

Vaswani et al. Attention Is All You Need. NIPS 2017.

Transformer: Positional Encoding

The self-attention operation is permutation equivariant (i.e., if we permute the

input sequence, the output sequence will be exactly the same, except
permuted also).

How can we make the representations sensitive to word order?

o Positional embeddings: learn vectors to embed the word positions in the
sentences as we embed the words (i.e., create an embedding vector for each
possible position) (can’t generalize to unseen positions).

o Positional encoding: don’t learn the position vectors, simply choose a function to
map the word positions to real-valued vectors (to be added to the word vectors).

Positional . 2i/d

a PFE 5N = 10000 ="/ Fmodel
Encoding ®_6 (pos,2i) = $in(pos/ _)
PE(pos 2i+1) = cos(pos/10000%/ dmoe)

Input
Embedding

T

Inputs

pos —»[sin (pos) ,CoS (ﬂ) , sin (&) , COS (A)]
Aodel = 4 10000° 10000° 10000** 10000°*

Transformer: Encoder

Encoder is composed of N layers; each of which has two sublayers (a
multi-head attention and feed forward network) with residual
connections around them.

r I D
~—> Add & Norm)
Feed
Forv:rard 1 x_encoder = word_embeds + pos_embeds
— 2 v for layer i in range(N):
Nx 1 —(Add &Norm) 3 q, k, v = x_encoder, x_encoder, x_encoder
Mult-Head 4 att = MultiHeadAttention(q, k, v)
Attention 5 att = LayerNorm(x_encoder + Dropout(att))
| 1 6 ffw = Feedfw(att)
~ / 7 x_encoder = LayerNorm(att + dropout(ffw))
Positional D
Encoding
Input
Embedding
T
Inputs

Vaswani et al. Attention Is All You Need. NIPS 2017.

Transformer: Decoder

Decoder is designed similarly to Encoder except that it has a new sublayer
called Masked Multi-Head Attention to ensure that predictions for position i
can only depends on previous positions (for generate a translated sentence in
Machine Translation).

| Softmax |
t 1 x_decoder = word_embeds + pos_embeds
| Linear |} 2
7 ~ 3 for layer_i in range(N):
LAdd & Norm <=~ 4 q, k, v = x_decoder, x_decoder, x_decoder
Feed 5 att = MaskedMultiHeadAttention(q, k, v)
Forward 6 att = LayerNorm(x_decoder + Dropout(att))
1) 7
((Add & Norm <= 8 q = att
Multi-.Head 9 k, v = x_encoder, x_encoder
Attention 10
T 7) Nx 11 att = MultiheadAttention(q, k, v)
——— 12 ffw = Feedfw(att)
((Add & Norm Je— 13 x_decoder = LayerNorm(att + dropout(ffw))
Masked 14 .
Multi-Head 15 logits = Feedfw(x_decoder)
Attention 16 preds = softmax(logits)
—tr
. e . -
Vaswani et al. Attention Is All You Need. NIPS 2017.

Transformer: Decoder

The masking schema in Transformer Decoder (multiplied to
the attention matrix directly):

0.0 A

25 A

5.0 A

7.5 1

10.0

12.5 A

15.0 1

17.5 1

Using the mask, word at position 10 is only
allowed to attend to words at position 0-9

Scaled Dot-Product

2

0 5 10 15

Masked Multi-Head Attention

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Attention
E 1L | N 11
V- v o -
Linear Linear P Linear
V K Q

t

MatMul

t

SoftMax

t

Mask (opt.)

t

Scale

t

MatMul

1
Q

1

K

r

>

\Y

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Transformer For Machine Translation

Evaluation

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 102
GNMT + RL [38] 24.6 39.92 2.3-102 1.4.10%
ConvS2S [9] 25.16 40.46 9.6-10'% 1.5-10%
MoE [32] 26.03 40.56 2.0-10 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 1020
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-10%!
ConvS2S Ensemble [9] 2636 41.29 7.7-10"7 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-10%

Transformer For Contextualized
Word Embeddings

Transformer

Segment Recurrence

GPT

Generative Pretrained Transformer [Radford et al., 2018]

Similar to ELMo, GPT trains a traditional left-to-right language model.
However, the decoder architecture from Transformer is used instead of
LSTM.

In particular, the Transformer decoder is pre-trained with the next word
prediction task:

to t3 tk

Maximize:

pretmm - E log |tz 1: 3—29 - t1§9transformer)

GPT: Fine-tuning
The whole GPT model is often fine-tuned for downstream Text
applications @

Initialize all weights with pretrained weights
Convert target task’s input to the single sequence format
Use the last token’s representation to make predictions

Feed Forward
Add an extra softmax layer to make predictions on target task " ¥

Re-train the whole model with the combined loss of the target
task and the language model task:
° Improve generalization of the supervised model
Masked Multi
> Accelerate convergence Self Attention

L = Lta/rget -+)\Lp'r'et’raz'n I

Text & Position Embed

GPT: Input Transformation for Fine-tuning

Convert structured inputs into an ordered sequence that our pre-trained model can process.
o Since the pre-trained model was trained on contiguous sequences of text

These input transformations allow us to avoid making extensive changes to the architecture

across tasks

Classification

Similarity/
g 4

Two possible ordering

Multiple Choice

Concatenate the document

context and question —

Start Text Extract Transformer Linear
Start Premise Delim | Hypothesis | Extract | > Transformer Linear
Start Text 1 Delim Text 2 Extract | = Transformer
- -+ Linear
Start Text 2 Delim Text 1 Extract | = Transformer
J element-wise add
Start Context Delim Answer 1 | Extract | = Transformer Linear
Start Context Delim Answer 2 Extract Transformer Linear
| Stat » Context Delim Answer N Extract Transformer Linear

GPT: Evaluation

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5x) ; ; 89.3 - _ _
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 59.2
Multi-task BILSTM + Attn [64] 72.2 72.1 - - 82.1 61.7
Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0

GPT: Evaluation
P :

Just wanted to give you all a heads up, our lab found an
amazing breakthrough in language understanding. but we
also worry it may fall into the wrong hands. so we decided
to scrap it and only publish the regular *ACL stuff instead.
Big respect for the team for their great work.

1:08 AM - Feb 16, 2019 - Twitter for Android

112 Retweets 774 Likes

To wit: when GPT-2 was tasked with writing a response to the prompt, “Recycling is

good for the world, no, you could not be more wrong,” the machine spat back:

“Recycling is NOT good for the world. It is bad for the environment, it is bad for our health,
and it is bad for our economy. I’'m not kidding. Recycling is not good for the environment. It
https://techcrunch.com/2 is destructive to the earth and it is a major contributor to global warming. Recycling is not
019/02/17/openai-text- good for our health. It contributes to obesity and diseases like heart disease and cancer.
generator-dangerous/ Recycling is bad for our economy. It increases the cost of a product, and in turn, the price
of everything that is made with that product. Recycling is not good for our nation. We pay a
tremendous price for the privilege of having the world’s most advanced and efficient

recycling system. Recycling is a huge, colossal waste of time, energy, money, and

resources.”

Problem with GPT

Still only use the left context to represent the

words in the sentences.
Anybody sees
BERT?

Let me take
it, ELMo

BERT

Blidi£(6c1t8i())nal Encoder Representations from Transformer (BERT) (Devlin et
al.,

BERT aims to capture the context over the whole sentence for the word
representations based on two different training objectives:

> Masked language model (i.e., the cloze test)
> Next sentence prediction

Use the encoder of Transformer to the network architecture
Can be fine-tuned for both sentence and word level tasks

Use the WordPiece tokenization: the vocabulary is initialized with all the
individual characters in the language, and then the most frequent/likely
combinations of the symbols in the vocabulary are iteratively added to the
vocabulary.

BERT: Pre-training

Masked Language Mode

» Words are chosen at random for being masked
(by a special token [MASK]) or replaced by a
random tokens.
=> force the model to collect bidirectional

information to make true predictions.

» Training objective: recover the original tokens
from the corrupted version:

K
Z mzlog(P(t‘L|tla ey by ti-l—la ey tK)
=1

m; € {0,1} indicates whether ¢; is masked or not.

ts [MASK] - te

BERT: Pre-training

Next sentence prediction (binary classification) (done after the masked
language model pre-training)

> Introduce two special tokens [CLS] and [SEP] that are put at the beginning of
the first sentence and the end of the sentences respectively.

° Sample 2 sentences A and B:
> 50% of the time B is actually next to A (positive examples)
> 50% of the time B is randomly chosen (negative examples)

Input [CLS]W my dog is ‘ cute | [SEP] he | likes ” playw ##ing | [SEP]

Token

Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe Elikes Eplay EMing E[SEP]
L -+ + -+ L L L] L -+ -+ L

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
o L + L - o L + L L -

Position

Embeddings Eo E1 Ez E3 E4 ES E6 E7 ES E9 E10

BERT: Fine-tuning For Sentence
Pair Classification Tasks

i.e., natural language inference (MNLI), question pair matching (QQP).

Class
Label
-)
BERT = Use [CLS] for fine-tuning on
sentence pair classification tasks.
Eas || E Ey Esery || B Ev
— B e e gy
N Vg N N N N
e || T o [SEP) L ok
Sentence 1 Sentence 2

BERT: Fine-tuning For Single
Sentence Classification Tasks

Label
= 2
DEREN
BERT > Consider a single sentence A as a
degenerate <A, @> pair.
—> Use [CLS] for fine-tuning as usual.
sy E, E, En
~ ~ - =
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

BERT: Evaluation

GLUE (General Language Understanding Evaluation)

benchmark
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64 .8 798 904 36.0 733 849 56.8 71.0
OpenAl GPT 82.1/81.4 703 874 91.3 454 80.0 823 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT| srcEe 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

BERT: Finetuning For
Question Answering

e.g., the SQUAD dataset

* Determine the answer span by
identifying its start and end token.

* Introduce START vector S € R¥and

Start/End Span END vector E € RH

.’ g .. * Probability of the i-th token being the
[Ty IT[ssm I T,] [T] start of the answer:
BERT P(St&l’t = Z) = W
* Probability of the j-th token being the
Ees || E; Ev || Egem || E |~ | Eu end of the answer:
——r —{—— . el
— — —— — \ P(end = j) = =57,
m T::k T;k (SEP] T:k T:‘k z GE TJ
|_'_/ _'_/ * Training objective: maximize
Question Paragraph log(P(start — @)) + 10g(P(end — j))

BERT: Finetuning For Question
Answering (Token Level Tasks)

e.g., the SQUAD dataset

Start/End Span

. Nm mm
- (e) - (W)

Eas || Ey Ey Esery || Ei Ew
AN AN 2N 2N a
G LI L L =y L
v el ()

Question Paragraph

Determine the answer span by identifying
its start and end token.
Introduce START vector S € R and END
vector £ € RH
Probability of the i-th token being the start
of the answer:

ST
Probability of the j-th token being the end
of the answer:

P(start =1i) =

eF T
Z eE-ij

Training objective: maximize

P(end = j) =

log(P(start = 1)) + log(P(end = 7))

Evaluation: choose the span with highest
score:

score(start =i,end =j) =S -T,+ E -1

BERT: Evaluation

System Dev Test
EM FlI EM Fl System Dev Test
Top Leaderboard Systems (Dec 10th, 2018) EM FI EM Fl

Human - - 823 912 Top Leaderboard Systems (Dec 10th, 2018)
#1 Ensemble - nlnet - - 86.0 91.7 Human 86.3 89.0 86.9 895
#2 Ensemble - QANet - - 845905 #1 Single - MIR-MRC (F-Net) - - 74.8 78.0

Published #2 Single - nlnet - - 742 771
BiDAF+ELMo (Single) - 8.6 - 858 -

Published
R.M. Reader (Ensemble) 81.2 879 82.3 88.5 unet (Ensemble)] 714 749
Ours SLQA+ (Single) ; 714 744

BERTBASE (Single) 80.8 88.5 - -
BERT arcE (Single) 84.1 909 - - _ Ours
BERT; arGe (Ensemble) 858 91.8 - i} BERTarGE (Single) 78.7 81.9 80.0 83.1
BERT | ArGE (Sg1+Tr1v1aQA) 84.2 91.1 85.1 91.8
BERT ArRGE (Ens.+TriviaQA) 86.2 92.2 87.4 93.2 S QU AD v2.0.

SQuUAD v1.1.

Problems with BERT

Discrepancy between pretraining and fine-tuning due to [MASK] tokens

Assumes the predicted tokens (i.e., the masked ones) are independent of each
other given the unmasked tokens (i.e., able to model the joint probability using the
product rule due to the avoidance of recurrence)

The training is done over separated fixed length segments of the input text
o Cannot capture the longer-term dependency beyond the predefined context length

° the fixed-length segments are created by selecting a consecutive chunk of
tokens/symbols without respecting the sentence or any other semantic boundary (context
fragmentation).

e & © ® e @ o o o 0 o e e @ o o O
g & o o e o o o o 0 o @ @ o o 0
o o 9 9 o 9 9 O o 0 o @ @ o o 0
e & & 2 ¢ @ ¢ @ o0 o * @ o o O
xy] b £ b = Bl
—_— —_— L - s
Segummt Hegrramt 3 Limgtes | Coabaxt Limitid Crintex Limitas | Cooet
(a) Train phase. (b) Evaluation phase.

Transformer-X| (Extra Long)

Introduce the segment-level recurrence into Transformer.

During training, the hidden state sequence computed for the previous
segment is fixed and cached to be reused as an extended context for
the next segment computation.

Let: s+ = [zr1, - ,2r2] aNd Sr41 = [Zr411, - ,2-41,1] be the two
consecutive segments in training, and h? € RY*? be the hidden state
sequence of the n-layer of the model for the T segment s, then:

~n—1 -1 -1
h?+/1=LSG(h? Johtiipso— |
Any parameters inside |

n n n _ 1n—1 T 1n—1 T 1n—1 T
SG will not be updated Ar+1; Kr41, Vr41 = h»r+1 Wq 9h’r+1wk :hr+1wv ’
during backpropagation f_H = Transformer-Layer (q?_l_l, k¢+1,vf+1) .

— We only want to train this

o © o 0 o
where SG stands for stop-gradient %
e] O

and [hy o h,] is the concatenation operation.

Transformer-XL: Segment-level
Recurrence

So, different from Transformer, the key and value vectors are also
conditioned on the extended context cached from the previous
segment.

This creates the that allows the effective

context to go way beyond just two segments (analogous to truncated
BPTT for RNN language models).

During the inference time, the representations from the previous
segments can be reused, instead of being computed from scratch.

Estended Context

(a) Training phase. (b) Evaluation phase.

Transformer-XL: Relative Position Encodings

With the standard absolute position encodings: h-11 = f(h:,Es ., + Ui.L)
so no positional difference between zr,; and Tr+1,; h, = f(h,_1,Es, + Uy.1)

Instead of using absolute position encodings, use the
to inject the temporal bias into the attention scores of the

layers (i.e., the distance i — j between the j-th key vectork:;and the i-
th query vector 4,).

AY; = E; W, W,E;, +E; W, W, U; AT =B W] W 5B, + B[W Wi rR.
() (b) (a) ®)
Word T T T T B T o
representation / + }Iz wq WkExﬂ;+pi wq WkUj, v ZJJ WiEEmj/_Fz} Wk",RR'_./,'
“EeY © R © (d)

E. is word embedding vector, U. and R. are absolution and relative
position embeddings (respectively), and u and v are learnable vectors.

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context. Dai et al. 2019.

Transformer-x| Evaluation On
Language Modeling Datasets

Model |#Param PPL

Model | #Param PPL Shazeer et al. (2014) - Sparse Non-Negative 33B 529
Grave et al. (2016b) - LSTM - 48.7 Chelba et al. (2013) - RNN-1024 + 9 Gram 20B 51.3
Bai et al. (2018) - TCN - 452 Kuchaiev and Ginsburg (2017) - G-LSTM-2 - 36.0
Dauphin et al. (2016) - GCNN-8 - 44.9 Dauphin et al. (2016) - GCNN-14 bottleneck - 31.9
Grave et al. (2016b) - LSTM + Neural cache - 40.8 Jozefowicz et al. (2016) - LSTM 1.8B 30.6
Dauphin et al. (2016) - GCNN-14 - 37.2 Jozefowicz et al. (2016) - LSTM + CNN Input| 1.04B 30.0
Merity et al. (2018) - QRNN I5IM 33.0 Shazeer et al. (2017) - Low-Budget MoE ~5B 34.1
Rae et al. (2018) - Hebbian + Cache - 299 Shazeer et al. (2017) - High-Budget MoE ~5B 28.0
Ours - Transformer-XL Standard I5IM 24.0 Shazeer et al. (2018) - Mesh Tensorflow 49B 240
- : j - S Baevski and Auli (2018) - Adaptive Input® 0.46B 24.1
gﬁi:sik-}f;ifzﬁéi [))(lf)[‘afg(iaptwe Input %ggﬁ igg Baevski and Auli (2018) - Adaptive Input® 1.0B 237
Ours - Transformer-XL Base 0.46B 23.5

Table 1: Comparison with state-of-the-art results on Ours - Transformer-XL Large 0.8B 21.8

WikiText-103. © indicates contemporary work.

Table 4: Comparison with state-of-the-art results on One Bil-
lion Word. © indicates contemporary work.

XLNet (Yang et al. 2019)

Use Transformer-XL as the network architecture.

Inheriting the bidirectional context modeling from BERT while addressing its
masked token independency assumption and pretraining- fmetunmg
discrepancy, XLNet performs

o tokens are indexed from 1to T

o Zris the set of all possible permutation of [1,2,...,7]
Z — [Zla Ry wvey Rty ooy ZT] S ZT
Zot — [er Ry eeey Zt—l]

o The loss function: T
mglx EZNZT [; logpg(:!:zt | xz{t}]

> Only permute the factorization order, not the sequence order: keep the original order, use
the positional encodings corresponding to the original sequence, and rely on a proper
attention mask in Transformers to achieve permutation of the factorization order.

XLNet: Partial Prediction

Permutation causes slow convergence in the preliminary
experiments.

So, only predict the last tokens in the factorization order to
reduce the optimization difficulty (as the last tokens can
assume the longest context in the sequence given the
current factorization order)

o Split the sequence into a non-target subsequence and target
subsequence.

2|
max Bz, [lﬂgpe(xz}c | xzﬁ)] =Eznz [) logpe(as, | Xa.,)]
t=c+1

* Cis chosen such that |z| /(|z| —¢) = K

XLNet: Two-Stream Self-Attention

In the naive implementation, the next-token distribution would be:

_ __exp(e® hol(xag,))
pﬁ"(xzt = | x“’"*"ﬂ) Y HP(E{T’}Thﬂ{xx{t])

This does not depend on which position it will predict, i.e., 2t

° It can’t see Z,, otherwise the objective is trivial (this is also why BERT needs
masks)

So, we want to make this distribution to be :
Modeling this is

T 44— hon-trivial, i.e., need
Do [Xz = | X,) — eXp (e(m) gﬂ(xz{f’ zt)) to handle the cases
’ = Soooexple(x) go(xz,,2t)) forj = tandj > ¢
differently

|dea: using two sets of hidden representations:
° The context representations he(xz.,) to encode both the context and Z, itself.

> The query representations ge(Xz.,, 2t) to only encode the contextual informationXz_, and
the position 2t .

XLNet: Two-Stream Self-Attention

Attention

[ﬂl[*“l

- -'-“- -
| @ @ @

The content stream:
h{™ + Attention(Q = ™V KV = h{" 1))
This is also integrated with the ideas of

segment level recurrence and relative position
encodings from Transformer-XL:

h(™ « Attention(Q = h(™D KV = [ﬁ(m—”,h(m—” .9)

Z.\;_:t

The query stream:

g5 4 Attention(Q = g{ =), KV = h{" ;)

XLNet: Two-Stream Self-Attention

CY R O R CY R Y

] [i [

1] i]

z 2 Z 2 z 2 2 2
A Attention Masks

(M)

soee 9., " is used for prediction during pre-

Masked Two-streamn Attention

L o Cemensm) training.
eee
exp (e(x) T 9o (Xa_, 1))
{~qee po(Xs, =x|x,_,) = e
N “ @ | Query stream: Yopexple(r) T go(Xa_,, 2t))
" cannot see sell

Masked Two-stream Attention Lo

[hgﬁw) is the contextualized embedding used
for fine-tuning.

L
Sample a factorization order:

XLNet: Fine-tuning

Similar to BERT, fine-tune for downstream tasks

For token level tasks: the same

For sentence level tasks:
> also use the [CLS] and [SEQ] tokens as BERT
° recurrence connection over sentences (segments)
> Relative segment encoding:

° a'lj g (q’b —I— b)TSZJadded to:

o (b)
+ uTWk,EEmj + UTWk,RRi—j .

(©) (@

o 845 = 84 if positionsiand j belong to the same sentence; and Si; = S—
otherwise.

— XLNet can directly model input with more than two sentences.

XLNet: Evaluation

The SQUAD question answering datasets

SQuADI1.1 EM F1 | SQuAD2.0 EM F1
Dev set results without data augmentation

BERT [10] 84.1 90.9 | BERTY [10] 78.98 81.77
XLNet 88.95 9452 | XLNet 86.12 88.79

Test set results on leaderboard, with data augmentation (as of June 19, 2019)
Human [27] 82.30 91.22 | BERT+N-Gram+Self-Training [10] 85.15 87.72

ATB 86.94 92.64 | SG-Net 85.23 8793
BERT" [10] 87.43 93.16 | BERT+DAE+Ao0A 85.88 88.62
XLNet 89.90 95.08 | XLNet 86.35 89.13

XLNet: Evaluation

The GLUE benchmark

Model MNLI QNLI QQP RTE SST-2 MRPC ColLA STS-B WNLI
Single-task single models on dev

BERT [2] 86.6/- 92.3 913 704 93.2 88.0 60.6 90.0 -
XLNet 89.8/- 93.9 91.8 838 95.6 89.2 63.6 91.8 -
Single-task single models on test

BERT [10] 86.7/85.9 91.1 89.3 70.1 94.9 89.3 60.5 87.6 65.1

Multi-task ensembles on test (from leaderboard as of June 19, 2019)
Snorkel™ [29] 87.6/87.2 93.9 899 809 96.2 91.5 63.8 90.1 65.1

ALICE" 88.2/87.9 95.7 90.7 835 95.2 92.6 68.6 91.1 80.8
MT-DNN* [18] 87.9/87.4 96.0 899 86.3 96.5 92.7 68.4 91.1 89.0

XLNet* 90.2/89.7° 98.6" 9037 863 96.8' 93.0 67.8 91.6 90.4

Datasets and Resources

Pre-trained datasets

-One Billion Word Benchmark

-BooksCorpus (800M words)

-BooksCorpus (800M words)
-English Wikipedia (2,500M words)
(13GB text in total)

-BooksCorpus (800M words)
-English Wikipedia (2,500M words)
-Giga5 (16GB text)

-ClueWeb 2012-B (19GB text)
-Common Crawl (78GB text)

More on costs to train these models (about $245,000 for XLNet!):
https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

Hugging Face — PyTorch Transformers

Hu?ging Face (https://huggingface.co/) implements most of the
well-known transformers.

Pretrained model of BERT, GPT, XLnet, ... are ready to be fine-
tuned on downstream tasks and available at:

https://github.com/huggingface/pytorch-transformers

https://huggingface.co/
https://github.com/huggingface/pytorch-transformers

