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Recap: Word2vec

Continuous Bag of Words (CBOW):
predicting the center words using 
the context words (𝑃(𝑤𝑡|𝑤𝑡−2, 𝑤𝑡−1, 𝑤𝑡+1, 𝑤𝑡+2))

Context words: windows of size 2 before and after the center word

Skip-grams (SG):
predicting the context words using
the center word (𝑃 𝑤𝑡+𝑖 𝑤𝑡 , 𝑖 ∈ {−2,−1,1,2})



Recap: Word2vec
For each position 𝑖 = 1, … , 𝑁, predict the context words within a 
window of fixed size 𝑚, given the the center word 𝑤𝑖:

Likelihood = 𝐿 𝜃 = ෑ

𝑖=1

𝑁

ෑ
−𝑚≤𝑗≤𝑚

𝑗≠0

𝑃(𝑤𝑖+𝑗|𝑤𝑖; 𝜃)

The objective/loss function is the (average) negative log likelihood:

loss = 𝐽 𝜃 = −
1

𝑁


𝑖=1

𝑁


−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑃(𝑤𝑖+𝑗|𝑤𝑖; 𝜃)

The parameters 𝜃 here involve the word vectors we want to learn

Minimizing the loss function amounts to maximizing the predictive 
accuracy



Recap: Wovd2vec



Problem With Word2vec
A single vector is used for a word, neglecting its possibly 
multiple meanings (i.e., polysemy)
◦ e.g., “fire”, “bank”, “present”, etc.

◦ a simple trick: learn an embedding vector for each meaning (i.e., 
senses in WordNet) of the words, but this assumes the availability of 
high-quality word sense disambiguation systems to assign senses to 
words in the sentences (not reliable)

◦ this ignores the contexts of the words in the sentences, thus called 
uncontextualized word embeddings

So, we want contextualized word embeddings that can take 
the context of the words (i.e., their sentences) into account 
to produce vectors for the words



Contextualized Word Embeddings
Idea: the vector for a word should be specific to the word’s context, so 
we can train models that take the word’s context and produce the word 
vector

Questions: How do we train such models? How do we obtain the 
training data?

Answer: remember language models with RNN? We can train a RNN 
language model and use the RNN hidden vectors as the contextualized 
embeddings for the words in the sentences.

◦ We thus need to store the whole language model (i.e., the parameters) so it can 
be applied to new sentences

◦ The embedding vector for a word will now be conditional on the other words in 
the sentences

◦ The whole language model can be fine-tuned later for specific downstream tasks



Recap: Language Modeling
Language Modeling is the task of predicting what word comes next 
given a sequence of previous words.

the students opened their _______ 

More formally, given a sequence of words 𝑥1, 𝑥2, … , 𝑥𝑖, compute the 
probability distribution of the following word:

𝑃(𝑥𝑖+1|𝑥𝑖 , 𝑥𝑖−1, … , 𝑥1)

A system that can do this is called a language model

books
laptop

exams

eyes



Recap: The RNN Language Model

𝑾𝑒 𝑾𝑒 𝑾𝑒 𝑾𝑒

𝑾ℎ 𝑾ℎ 𝑾ℎ 𝑾ℎ

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4

𝑒1 𝑒2 𝑒3 𝑒4

𝑬 𝑬 𝑬 𝑬

the students opened their
𝑥1 𝑥2 𝑥3 𝑥4

𝑼

𝑦4 = P(𝑥5|the students opened their)

words/one-hot vectors

𝑥𝑖 ∈ {0,1}|𝑉|

word embeddings

hidden states
ℎ𝑖 = 𝜎(𝑾ℎℎ𝑖−1 +𝑾𝑒𝑒𝑖 + 𝑏1)
ℎ0 is the initial hidden state
using LSTM or GRU is more common

output distribution
𝑦𝑖 = softmax(𝑈ℎ𝑡 + 𝑏2)



Contextualized Word Embeddings With 
The RNN Language Model

𝑾𝑒 𝑾𝑒 𝑾𝑒 𝑾𝑒

𝑾ℎ 𝑾ℎ 𝑾ℎ 𝑾ℎ

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4

𝑒1 𝑒2 𝑒3 𝑒4

𝑬 𝑬 𝑬 𝑬

𝑥1 𝑥2 𝑥3 𝑥4

𝑼𝑼𝑼𝑼

𝑦1 𝑦2 𝑦3 𝑦4

𝐽1(𝜃) 𝐽2(𝜃) 𝐽3(𝜃) 𝐽4(𝜃)+ + + + … = 𝐽(𝜃)
Negative log likelihood/probability

• Use the hidden vectors 
ℎ𝑖 as the word vectors 
for the words in the 
input sentence

• Each vector ℎ𝑖 for 𝑥𝑖 will 
involve the context 
information from the 
previous words in the 
sentence, thus being 
contextualized

words/one-hot vectors

𝑥𝑖 ∈ {0,1}|𝑉|



Problem With The RNN-based Word Vectors
The word vectors ℎ𝑖 only encode the context information from 
the words on the left (i.e., the previous words), what’s about the 
context on the right?

The RNN-based model needs to keep the input embedding table 
𝑬 that is large and assumes a fixed vocabulary. What’s if we have 
out-of-vocabulary words?

◦ One trick is to reserve an UNKNOWN word for all the out-of-vocabulary 
words, but this might not loose some useful information from the form 
of the word (i.e., morphology).

A single RNN layer might not be sufficient to capture the 
underlying context information for the input sentences. How’s 
about making it deeper (i.e., more layers)?



Deep Contextualized Word Embeddings
ELMo (Embeddings from Language Models) is introduced in (Peters et 
al., 2018).

Main ideas:
◦ Jointly perform both forward and backward language modeling (i.e., 

bidirectional language models)

◦ Increase the number of RNN layers

◦ Employ character-level input representations to alleviate the out-of-
vocabulary issue

◦ Fine tune the model for downstream tasks

Hi



ELMo

𝑥1 𝑥2 𝑥𝑁

Char 
CNN

Char 
CNN

Char 
CNN

𝑒1 𝑒2 𝑒𝑁

forward LSTM (layer 1)

forward LSTM (layer 2)

forward LSTM (layer 𝐿)

backward LSTM (layer 1)

backward LSTM (layer 2)

backward LSTM (layer 𝐿)

Softmax

.

.

.

.

.

.

ℎ𝑖,1
𝐿𝑀

ℎ𝑖,2
𝐿𝑀

ℎ𝑖,𝐿
𝐿𝑀

ℎ𝑖,1
𝐿𝑀

ℎ𝑖,2
𝐿𝑀

ℎ𝑖,𝐿
𝐿𝑀

ℎ𝑖,𝐿
𝐿𝑀 is used to predict the next

token 𝑥𝑖+1
ℎ𝑖,𝐿
𝐿𝑀 is used to predict the

previous token 𝑥𝑖−1

We learn the model parameters
by jointly optimizing the forward
and backward language model
objectives:



𝑖=1

𝑁

(log𝑃 𝑥𝑖+1|𝑥𝑖 , … , 𝑥1; 𝜃𝑐𝑛𝑛, Ԧ𝜃𝑙𝑠𝑡𝑚, 𝜃𝑠

+ log𝑃 𝑥𝑖−1|𝑥𝑖 , … , 𝑥𝑁; 𝜃𝑐𝑛𝑛, ശ𝜃𝑙𝑠𝑡𝑚, 𝜃𝑠 )

Note that the parameters for the character-based 
CNN and the softmax layer for distributions are shared.



ELMo: The character CNN

s t u d e n t s

Character embeddings

CNN with multiple filters

Highway Networks

Max-pooling

𝑥𝑖

𝑒𝑖

Inspired by the gating mechanism in Long 
Short Term Memory (LSTM) RNN, 
Highway Networks (Srivastava et al., 
2015) allows information to either being 
transformed (as usual DNN does) or 
carried through in its layers, so that 
information flow across layers becomes 
much easier. 

Allows very deep NN to be trained with 
simple SGD.



Fine-tuning with ELMo
The representation vector for input token 𝑖 is now:

𝑅𝑘 = 𝑒𝑖 , ℎ𝑖,𝑗
𝐿𝑀, ℎ𝑖,𝑗

𝐿𝑀 𝑗 = 1, … , 𝐿
= {ℎ𝑖,𝑗|𝑗 = 0,… , 𝐿}

with ℎ𝑖,0 = 𝑒𝑖 and ℎ𝑖,𝑗 = [ℎ𝑖,𝑗
𝐿𝑀, ℎ𝑖,𝑗

𝐿𝑀] otherwise.

We can combine the internal representations via a (trainable, weighted) 
linear combination:

𝐸𝐿𝑀𝑜𝑖
𝑡𝑎𝑠𝑘 = 𝛾𝑡𝑎𝑠𝑘

𝑗=0

𝐿

𝑠𝑗
𝑡𝑎𝑠𝑘ℎ𝑖,𝑗

with 𝑠𝑡𝑎𝑠𝑘 are softmax-normalized weights.

The ELMo representations can be used as extra token-level features:
◦ For input layer: replace the original inpu vector 𝑥𝑖 with [𝑥𝑖 , 𝐸𝐿𝑀𝑜𝑖

𝑡𝑎𝑠𝑘]

◦ For output layer: replace the hidden vector ℎ𝑖 with [ℎ𝑖 , 𝐸𝐿𝑀𝑜𝑖
𝑡𝑎𝑠𝑘]



ELMo: Evaluation

Table 1 from the original paper.



Problem with ELMo
Problems
◦ The recurrent computation (sequential) is slow and prevents parallelization. 

◦ The actual application often fixes the ELMo network to avoid the 
computational cost
◦ Thus lacking the ability to fine tune the network for the downstream tasks.

◦ Although the gated mechanisms in LSTM and GRU can mitigate the gradient 
vanishing problem to some extent, it is still very difficult to incorporate the 
context information from the very far way words into the representation for 
the current word.

Question: How do we address such problem?

Answer: self-attention
◦ Avoid the recurrent connections to enable parallelization

◦ The far away words have chance to directly contribute to the current word’s 
representation, depending on their relatedness.



Self-attention
Similar to RNN, self-attention is a sequence-to-sequence 
operation: a sequence of vector comes in and a sequence of 
vectors goes out.

Vanilla self-attention: let 𝑥1, … , 𝑥𝑛 be the input vector sequence. 
The output vector sequence 𝑦1, … , 𝑦𝑛 is computed by:

http://www.peterbloem.nl/blog/transformers



Some Improvements For Self-attention
Query, key and value vectors to differentiate three roles for the input vector 
𝑥𝑖: computing the weights for the output vector 𝑦𝑖, computing the weights for 
the other output vectors 𝑦𝑗(𝑗 ≠ 𝑖), and serving as the part of the weighted 
sums for the output vectors:

Scaling the dot product: to alleviate the large values of the dot product due to 
the dimensions of the input vectors:

This process is denoted by:

𝑦1, … , 𝑦𝑛 = 𝑠𝑒𝑙𝑓_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥1, … , 𝑥𝑛;𝑾𝑞 ,𝑾𝑘 ,𝑾𝑣)

query

key

value



Multi-head Self-attention
A single self-attention operation might only focus on one semantic aspect in the 
output representation vectors.

Multiple self-attention operations might enable greater representation power to 
cover multiple semantic aspects for the representation.

Introducing multiple query, key and value transformation matrices 𝑾𝑞
𝑟 ,𝑾𝑘

𝑟 ,𝑾𝑣
𝑟

(called attention head and indexed by 𝑟) to compute multiple output 
representation vectors for each position 𝑖 in the input.

◦ The corresponding representation vectors for each position are concatenated and sent 
to a feed-forward net to reduce the dimension back those in the original input.

𝑦1
𝑟 , … , 𝑦𝑛

𝑟 = 𝑠𝑒𝑙𝑓_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥1, … , 𝑥𝑛;𝑾𝑞
𝑟 ,𝑾𝑘

𝑟 ,𝑾𝑣
𝑟)

𝑦𝑖 = 𝑊 𝑦𝑖
1, … , 𝑦𝑖

𝐻 + 𝑏

where 𝐻 is the number of attention heads𝑦𝑖 = 𝑥𝑖 = 𝑘



Transformer
A composition of many multi-head attention operations, originally 
designed for machine translation with the encoder and decoder networks 
(Vaswani et al., 2017).

Vaswani et al. Attention Is All You Need. NIPS 2017.

English
Foreign language



Transformer: Positional Encoding
The self-attention operation is permutation equivariant (i.e., if we permute the 
input sequence, the output sequence will be exactly the same, except 
permuted also).

How can we make the representations sensitive to word order?
◦ Positional embeddings: learn vectors to embed the word positions in the 

sentences as we embed the words (i.e., create an embedding vector for each 
possible position) (can’t generalize to unseen positions).

◦ Positional encoding: don’t learn the position vectors, simply choose a function to 
map the word positions to real-valued vectors (to be added to the word vectors).



Transformer: Encoder
Encoder is composed of N layers; each of which has two sublayers (a 
multi-head attention and feed forward network) with residual 
connections around them.

Vaswani et al. Attention Is All You Need. NIPS 2017.



Transformer: Decoder
Decoder is designed similarly to Encoder except that it has a new sublayer 
called Masked Multi-Head Attention to ensure that predictions for position 𝑖
can only depends on previous positions (for generate a translated sentence in 
Machine Translation).

Vaswani et al. Attention Is All You Need. NIPS 2017.



Transformer: Decoder
The masking schema in Transformer Decoder (multiplied to 
the attention matrix directly):

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Masked Multi-Head Attention 

Using the mask, word at position 10 is only 
allowed to attend to words at position 0-9

http://nlp.seas.harvard.edu/2018/04/03/attention.html


Transformer For Machine Translation
Evaluation



Transformer For Contextualized 
Word Embeddings

Transformer

GPT BERT

XLNet

Segment Recurrence



GPT
Generative Pretrained Transformer [Radford et al., 2018]

Similar to ELMo, GPT trains a traditional left-to-right language model. 
However, the decoder architecture from Transformer is used instead of 
LSTM.

In particular, the Transformer decoder is pre-trained with the next word 
prediction task:

Maximize:



GPT: Fine-tuning
The whole GPT model is often fine-tuned for downstream 
applications

Initialize all weights with pretrained weights

Convert target task’s input to the single sequence format

Use the last token’s representation to make predictions

Add an extra softmax layer to make predictions on target task

Re-train the whole model with the combined loss of the target 
task and the language model task:

◦ Improve generalization of the supervised model

◦ Accelerate convergence 



GPT: Input Transformation for Fine-tuning

element-wise addTwo possible ordering

Concatenate the document 
context and question

Convert structured inputs into an ordered sequence that our pre-trained model can process.
◦ Since the pre-trained model was trained on contiguous sequences of text

These input transformations allow us to avoid making extensive changes to the architecture 
across tasks



GPT: Evaluation



GPT: Evaluation

https://techcrunch.com/2
019/02/17/openai-text-
generator-dangerous/



Problem with GPT
Still only use the left context to represent the 
words in the sentences.

Anybody sees 
BERT?



BERT
Bidirectional Encoder Representations from Transformer (BERT) (Devlin et 
al., 2018)

BERT aims to capture the context over the whole sentence for the word 
representations based on two different training objectives:

◦ Masked language model (i.e., the cloze test)
◦ Next sentence prediction

Use the encoder of Transformer to the network architecture

Can be fine-tuned for both sentence and word level tasks

Use the WordPiece tokenization: the vocabulary is initialized with all the 
individual characters in the language, and then the most frequent/likely 
combinations of the symbols in the vocabulary are iteratively added to the 
vocabulary.

Let me take 
it, ELMo



BERT: Pre-training
Masked Language Model

 Words are chosen at random for being masked
(by a special token [MASK]) or replaced by a 
random tokens.
=> force the model to collect bidirectional 

information to make true predictions.
 Training objective: recover the original tokens 

from the corrupted version:

indicates whether      is masked or not.



BERT: Pre-training
Next sentence prediction (binary classification) (done after the masked 
language model pre-training)

◦ Introduce two special tokens [CLS] and [SEP] that are put at the beginning of 
the first sentence and the end of the sentences respectively.

◦ Sample 2 sentences A and B:

◦ 50% of the time B is actually next to A (positive examples)

◦ 50% of the time B is randomly chosen (negative examples)



BERT: Fine-tuning For Sentence 
Pair Classification Tasks
i.e., natural language inference (MNLI), question pair matching (QQP).

 Use [CLS] for fine-tuning on 
sentence pair classification tasks.



BERT: Fine-tuning For Single 
Sentence Classification Tasks

> Consider a single sentence A as a 
degenerate <A, ∅> pair.
 Use [CLS] for fine-tuning as usual.



BERT: Evaluation
GLUE (General Language Understanding Evaluation) 
benchmark



BERT: Finetuning For 
Question Answering

e.g., the SQuAD dataset
• Determine the answer span by 

identifying its start and end token.
• Introduce START vector                  and 

END vector                 
• Probability of the 𝑖-th token being the 

start of the answer:

• Probability of the 𝑗-th token being the 
end of the answer:

• Training objective: maximize



e.g., the SQuAD dataset • Determine the answer span by identifying 
its start and end token.

• Introduce START vector                  and END 
vector

• Probability of the 𝑖-th token being the start 
of the answer:

• Probability of the 𝑗-th token being the end 
of the answer:

• Training objective: maximize

• Evaluation: choose the span with highest 
score:

BERT: Finetuning For Question 
Answering (Token Level Tasks)



BERT: Evaluation

SQuAD v1.1.

SQuAD v2.0.



Problems with BERT
Discrepancy between pretraining and fine-tuning due to [MASK] tokens

Assumes the predicted tokens (i.e., the masked ones) are independent of each 
other given the unmasked tokens (i.e., able to model the joint probability using the 
product rule due to the avoidance of recurrence)

The training is done over separated fixed length segments of the input text
◦ Cannot capture the longer-term dependency beyond  the  predefined context length

◦ the fixed-length segments are created by selecting  a  consecutive chunk of 
tokens/symbols without respecting the sentence or any other semantic boundary (context 
fragmentation).



Transformer-Xl (Extra Long)
Introduce the segment-level recurrence into Transformer.

During training, the hidden state sequence computed for the previous 
segment is fixed and cached to be reused as an extended context for 
the next segment computation.

Let:                                and                                           be the two 
consecutive segments in training, and                     be the hidden state 
sequence of the n-layer of the model for the 𝜏 segment      , then:

where SG stands for stop-gradient

and                 is the concatenation operation.

We only want to train thisAny parameters inside 
SG will not be updated 
during backpropagation



Transformer-XL: Segment-level 
Recurrence
So, different from Transformer, the key and value vectors are also 
conditioned on the extended context cached from the previous 
segment.

This creates the segment-level recurrence that allows the effective 
context to go way beyond just two segments (analogous to truncated 
BPTT for RNN language models).

During the inference time, the representations from the previous 
segments can be reused, instead of being computed from scratch.



Transformer-XL: Relative Position Encodings
With the standard absolute position encodings:                                          , 
so no positional difference between         and

Instead of using absolute position encodings, use the relative position 
encodings to inject the temporal bias into the attention scores of the 
layers (i.e., the distance 𝑖 − 𝑗 between the 𝑗-th key vector      and the 𝑖-
th query vector       ).

E* is word embedding vector, U* and R* are absolution and relative 
position embeddings (respectively), and 𝑢 and 𝑣 are learnable vectors.

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context. Dai et al. 2019.

Word 
representation 
= E ◦ U



Transformer-xl Evaluation On 
Language Modeling Datasets



XLNet (Yang et al. 2019)
Use Transformer-XL as the network architecture.

Inheriting the bidirectional context modeling from BERT while addressing its 
masked token independency assumption and pretraining-finetuning 
discrepancy, XLNet performs permutation language modeling:

◦ tokens are indexed from 1 to 𝑇

◦ is the set of all possible permutation of

◦ The loss function:

◦ Only permute the factorization order, not the sequence order: keep the original order, use 
the positional encodings corresponding to the original sequence, and rely on a proper 
attention mask in Transformers to achieve permutation of the factorization order.

Attention mask



XLNet: Partial Prediction
Permutation causes slow convergence in the preliminary 
experiments.

So, only predict the last tokens in the factorization order to 
reduce the optimization difficulty (as the last tokens can 
assume the longest context in the sequence given the 
current factorization order)
◦ Split the sequence into a non-target subsequence and target 

subsequence.

* c is chosen such that 



XLNet: Two-Stream Self-Attention
In the naïve implementation, the next-token distribution would be:

This does not depend on which position it will predict, i.e., 
◦ It can’t see       , otherwise the objective is trivial (this is also why BERT needs 

masks)

So, we want to make this distribution to be target position aware:

Idea: using two sets of hidden representations:
◦ The context representations          to   to encode both the context and         itself.

◦ The query representations                        to only encode the contextual information         and 
the position       .

Modeling this is 
non-trivial, i.e., need
to handle the cases
for 𝑗 = 𝑡 and 𝑗 > 𝑡
differently



XLNet: Two-Stream Self-Attention

The query stream:

The content stream:

This is also integrated with the ideas of 
segment level recurrence and relative position 
encodings from Transformer-XL:



XLNet: Two-Stream Self-Attention

is used for prediction during pre-
training.

is the contextualized embedding used 
for fine-tuning. 



XLNet: Fine-tuning
Similar to BERT, fine-tune for downstream tasks

For token level tasks: the same

For sentence level tasks:
◦ also use the [CLS] and [SEQ] tokens as BERT

◦ recurrence connection over sentences (segments)

◦ Relative segment encoding:

◦ is added to:

◦ if positions i and j belong to the same sentence; and                    
otherwise.

→ XLNet can directly model input with more than two sentences.



XLNet: Evaluation
The SQuAD question answering datasets



XLNet: Evaluation
The GLUE benchmark



Datasets and Resources
Model Pre-trained datasets

ELMo -One Billion Word Benchmark

GPT -BooksCorpus (800M words) 

BERT -BooksCorpus (800M words)
-English Wikipedia (2,500M words)
(13GB text in total)

XLNet -BooksCorpus (800M words)
-English Wikipedia (2,500M words)
-Giga5 (16GB text)
-ClueWeb 2012-B (19GB text)
-Common Crawl (78GB text)

More on costs to train these models (about $245,000 for XLNet!): 
https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/


Hugging Face – PyTorch Transformers
Hugging Face (https://huggingface.co/) implements most of the 
well-known transformers.

Pretrained model of BERT, GPT, XLnet, … are ready to be fine-
tuned on downstream tasks and available at:

https://github.com/huggingface/pytorch-transformers

https://huggingface.co/
https://github.com/huggingface/pytorch-transformers

