English Grammar and Constituency Parsing

Bonan Min
bonanmin@gmail.com
Some slides are based on class materials from Ralph Grishman, Thien Huu Nguyen, David Bamman, Dan Jurafsky, James Martin, Michael Collins

Syntax

With syntax, we're moving from labels for discrete items - documents (sentiment analysis), tokens (POS tagging, NER) - to the structure between items.

Syntax is fundamentally about the hierarchical structure of language and (in some theories) which sentences are grammatical in a language
words \rightarrow phrases \rightarrow clauses \rightarrow sentences

I shot an elephant in my pajamas

Nominal
elephant

Why Is Syntax Important?

Foundation for semantic analysis (on many levels of representation: semantic roles, compositional semantics, frame semantics)

Humans communicate complex ideas by composing words together into bigger units to convey complex meanings

Why Is Syntax Important?

Linguistic typology; relative positions of subjects (S), objects (O) and verbs (V)

SVO	English, Mandarin	I grabbed the chair
SOV	Latin, Japanese	I the chair grabbed
VSO	Hawaiian	Grabbed I the chair
OSV	Yoda	Patience you must have
\ldots	\ldots	\ldots

Why Is Syntax Important?

Strong representation for discourse analysis (e.g., coreference resolution)

https://en.wikipedia.org/wiki/Discourse_analysis

Formalisms

Phrase structure grammar (Chomsky 1957)

Dependency grammar
(Mel'čuk 1988; Tesnière 1959; Pāṇini)

Constituency

Groups of words ("constituents") behave as single units
"Behave" = show up in the same distributional environments as single units (e.g., the substitution test)

Substitution test for POS: if a word is replaced by another word, does the sentence remain grammatical?

Substitution test for Constituency: if a constituent is replaced by another constituent of the same type, does the sentence remain grammatical?

Context-Free Grammar (CFG)

A CFG gives a formal way to define what meaningful constituents are and exactly how a constituent is formed out of other constituents (or words). It defines valid structure in a language (i.e., defining how symbols in a language combine to form valid structures)

NP \rightarrow Det Nominal

NP \rightarrow Verb Nominal

Context-Free Grammar (CFG)

N	Finite set of non-terminal symbols	$\mathrm{NP}, \mathrm{VP}, \mathrm{S}$
Σ	Finite alphabet of terminal symbols	the, dog, eat
R	Set of production rules, each of the form $A \rightarrow \beta, \beta \in(\Sigma \cup N) *$	$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$ Noun \rightarrow dog
S	A designated start symbol	

Derivation

Given a CFG, a derivation is the sequence of productions used to generate a string of words/terminal symbols (e.g., a sentence), often visualized as a parse tree.

$$
\text { NP VP } \rightarrow \text { cats VP } \rightarrow \text { cats chase NP }
$$

the flight

a flight

the morning flight

Language

The strings of words (e.g., sentences) are called as "derivable from the start symbol (S)"

The formal language defined by a CFG is the set of strings derivable from S
$\mathrm{S} \rightarrow \mathrm{NPVP} \rightarrow$ cats $\mathrm{VP} \rightarrow$ cats chase $\mathrm{NP} \rightarrow$ cats chase mice

Preterminals

It is convenient to include a set of symbols called preterminals (corresponding to the parts of speech) which can be directly rewritten as terminals (words)

This allows us to separate the productions into a set which generates sequences of preterminals (the "grammar") and those which rewrite the preterminals as terminals (the "dictionary")

Grouping Alternates

To make the grammar more compact, we group productions with the same left-hand side:

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow \mathrm{N} \mid$ ART $\mathrm{N} \mid$ ART ADJ N
$\mathrm{VP} \rightarrow \mathrm{V} \mid \mathrm{VNP}$

Example

$$
\begin{aligned}
\text { Noun } \rightarrow & \text { flights } \mid \text { breeze } \mid \text { trip } \mid \text { morning } \\
\text { Verb } \rightarrow & \text { is } \mid \text { prefer } \mid \text { like } \mid \text { need } \mid \text { want } \mid \text { fly } \\
\text { Adjective } \rightarrow & \text { cheapest } \mid \text { non-stop } \mid \text { first } \mid \text { latest } \\
& \mid \text { other } \mid \text { direct } \\
\text { Pronoun } \rightarrow & \text { me }|I| \text { you } \mid \text { it } \\
\text { Proper-Noun } \rightarrow & \text { Alaska } \mid \text { Baltimore } \mid \text { Los Angeles } \\
& \mid \text { Chicago } \mid \text { United } \mid \text { American } \\
\text { Determiner } \rightarrow & \text { the } \mid \text { a } \mid \text { an } \mid \text { this } \mid \text { these } \mid \text { that } \\
\text { Preposition } \rightarrow & \text { from } \mid \text { to } \mid \text { on } \mid \text { near } \\
\text { Conjunction } \rightarrow & \text { and } \mid \text { or } \mid \text { but }
\end{aligned}
$$

Figure 12.2 The lexicon for \mathscr{L}_{0}.

Grammar Rules		Examples
$S \rightarrow$	$N P$ VP	I + want a morning flight
$N P \rightarrow$	Pronoun	I
	Proper-Noun	Los Angeles
	Det Nominal	a + flight
Nominal \rightarrow	Nominal Noun	morning + flight
	Noun	flights
$V P \rightarrow$	Verb	do
	Verb NP	want + a flight
	Verb NP PP	leave + Boston + in the morning
	Verb PP	leaving + on Thursday
$P P \rightarrow$	Preposition NP	from + Los Angeles

Figure 12.3 The grammar for \mathscr{L}_{0}, with example phrases for each rule.

Bracketed Notation

$\left[_{N P}[\right.$ Det the $]\left[\left[_{\text {Nominal }}\left[\left[_{\text {Noun }} f l i g h t\right]\right]\right]\right.$

Constituents

Every internal node is a phrase

- my pajamas
- in my pajamas
- elephant in my pajamas
- an elephant in my pajamas
- shot an elephant in my pajamas
- I shot an elephant in my pajamas

Each phrase could be replaced by another of the same type of constituent

Sentence

Rule	Description	Example
S \rightarrow VP	Imperative	• Show me the right way
S \rightarrow VP NP	Declarative	• The dog barks
S \rightarrow Aux VP NP	Yes/no questions	• Will you show me the right way?
S \rightarrow Wh-NP VP $S \rightarrow$ Wh-NP Aux NP VP	wh- questions	• What airlines fly from Burbank to Denver? • What flights do you have from Burbank to Tacoma Washington?

Noun Phrases

NP \rightarrow Pronoun | Proper-noun | Det Nominal

Nominal \rightarrow Nominal PP

- An elephant [pp in my pajamas]
- The cat [${ }_{p p}$ on the floor] [${ }_{p p}$ under the table] [${ }_{p p}$ next to the dog]

Nominal \rightarrow RelClause, RelClause \rightarrow (who|that) VP : A relative pronoun (that, which) in a relative clause can be the subject or object of the embedded verb.

- A flight [Relclause that serves breakfast]
- A flight [Relclause that I got]

Verb Phrases

$V P \rightarrow$ Verb	disappear
$V P \rightarrow$ Verb NP	prefer a morning flight
$V P \rightarrow$ Verb NP PP	prefer a morning flight on Monday
$V P \rightarrow$ Verb PP	leave on Wednesday
$V P \rightarrow$ Verb S	I think [S I want a new flight]
$V P \rightarrow$ Verb VP	want [to fly today]

Verb Phrases

$V P \rightarrow$ Verb	* I filled
$V P \rightarrow$ Verb NP	* I exist the morning flight
$V P \rightarrow$ Verb NP PP	* I exist the morning flight on Monday
$V P \rightarrow$ Verb PP	* I filled on Wednesday
$V P \rightarrow$ Verb S I exist [S I want a new flight]	
$V P \rightarrow$ Verb VP	* I fill [to fly today]

Subcategorization

Verbs are compatible with different complements

- Transitive verbs take direct object NP ("I filled the tank")
- Intransitive verbs don't ("I exist")

The set of possible complements of a verb is its subcategorization frame.

$$
\begin{array}{lll}
\text { VP } & \rightarrow \text { Verb VP } & \text { * I fill [yp to fly today] } \\
\text { VP } & \rightarrow \text { Verb VP } & \text { I want [vp to fly today] }
\end{array}
$$

Coordination

NP \rightarrow NP and NP	the dogs and the cats
Nominal \rightarrow Nominal and Nominal	dogs and cats
VP \rightarrow VP and VP	I came and saw and conquered
$\mathrm{JJ} \rightarrow$ JJ and JJ	beautiful and red
$\mathrm{S} \rightarrow$ S and S	I came and I saw and I conquered

Ambiguity

Most sentences will have more than one parse

Generally different parses will reflect different meanings ...

- Attachment ambiguity: a particular constituent can be attached to the parse tree at more than one place "I saw the man with a telescope."
Can attach PP ("with a telescope") under NP or VP
- Coordination ambiguity: different sets of phrases can be conjoined by a conjunction like "and":
"old man and woman" -> [old [men and women]] or [[old man] and [woman]]?

An Example

I shot an elephant in my pajamas
\(\left.\begin{array}{rl}\hline S \& \rightarrow NP VP

VP \& \rightarrow Verb NP

VP \& \rightarrow VP PP

Nominal \& \rightarrow Nominal PP

Nominal \& \rightarrow Noun

Nominal \& \rightarrow Pronoun

PP \& \rightarrow Prep NP

NP \& \rightarrow Det Nominal

NP \& \rightarrow Nominal

NP \& \rightarrow PossPronoun

Nominal\end{array}\right]\)| Verb | \rightarrow shot |
| ---: | :--- |
| Det | \rightarrow an \mid my |
| Noun | \rightarrowpajamas
 elephant |
| Pronoun | \rightarrow I |
| PossPronoun | \rightarrow my |

Evaluation

Parseval (1991): represent each tree as a collection of tuples.

Calculate precision, recall, F1 from these collections of tuples

$$
<l_{1}, i_{1}, j_{1}>, \ldots,<l_{n}, i_{n}, j_{n}>
$$

- l_{k} : label for the k-th phrase
- i_{k} : index for the first word in the k-th phrase
- j_{k} : index for the last word in the k-th phrase

$$
\begin{aligned}
& \bullet<S, 1,7> \\
& \bullet<N P, 1,1> \\
& \bullet<V P, 2,7> \\
& \bullet<V P, 2,4> \\
& \bullet<N P, 3,4> \\
& \bullet<\text { Nominal, 4, 4> } \\
& \bullet<P P, 5,7> \\
& \bullet<N P, 6,7>
\end{aligned}
$$

Evaluation

- Precision $(P)=$ number of tuples in the predicted tree also in correct tree, divided by number of tuples in the predicted tree $=5 / 7$
- Recall $(R)=$ number of tuples in the predicted tree also in correct tree, divided by number of tuples in the correct tree $=5 / 7$
- $F 1=\frac{2 P R}{P+R}$
- <S, 1, 7>
- <NP, 1,1>
$\bullet<V P, 2,7>$
- <NP, 3, 7>
- <Nominal, 4, 7>
-<Nominal, 4, 4>
- <PP, 5, 7>
- <NP, 6, 7>
$\bullet<S, 1,7>$
- <NP, 1,1>
-<VP, 2, 7>
- <VP, 2, 4>
-<NP, 3, 4>
-<Nominal, 4, 4>
- <PP, 5, 7>
-<NP, 6, 7>

Evaluation

Nonetheless, phrasal constituents are not always an appropriate unit for parser evaluation.

- In lexically-oriented grammars, such as CCG and LFG, the ultimate goal is to extract the appropriate predicate-argument relations or grammatical dependencies, rather than a specific derivation.
- We can use alternative evaluation metrics based on the precision and recall of labeled dependencies whose labels indicate the grammatical relations (Lin 1995, Carroll et al. 1998, Collins et al. 1999).

Why not measuring how many sentences are parsed correctly, instead of measuring component accuracy in the form of constituents or dependencies?

- The later gives us a more fine-grained metric
- Sentences can be long
- Distinguish between a parse that got most of the parts wrong and one that just got one part wrong

CFGs

Building a CFG by hand is really hard

To capture all (and only) grammatical sentences, need to exponentially increase the number of categories (e.g., detailed subcategorization info)

Verb-with-no-complement	\rightarrow	disappear
Verb-with-S-complement	\rightarrow	said
VP	\rightarrow	Verb-with-no-complement
VP	\rightarrow	Verb-with-S-complement S

Treebanks

Rather than create the rules by hand, we can annotate sentences with their syntactic structure and then extract the rules from the annotations

Treebanks: collections of sentences annotated with syntactic structure (e.g., Penn Treebank)

Penn Treebank


```
NP }->\mathrm{ DT JJ NN
NP }->\mathrm{ DT JJ NNS
NP }->\mathrm{ DT JJ NN NN
NP }->\mathrm{ DT JJ JJ NN
NP }->\mathrm{ DT JJ CD NNS
NP }->\mathrm{ RB DT JJ NN NN
NP }->\mathrm{ RB DT JJ JJ NNS
NP }->\mathrm{ DT JJ JJ NNP NNS
NP }->\mathrm{ DT NNP NNP NNP NNP JJ NN
NP }->\mathrm{ DT JJ NNP CC JJ JJ NN NNS
NP }->\mathrm{ RB DT JJS NN NN SBAR
NP }->\mathrm{ DT VBG JJ NNP NNP CC NNP
NP }->\mathrm{ DT JJ NNS , NNS CC NN NNS NN
NP }->\mathrm{ DT JJ JJ VBG NN NNP NNP FW NNP
NP }->\mathrm{ NP JJ , JJ '، SBAR '' NNS
```

NP	\rightarrow	NNP NNP
NP-SBJ	\rightarrow	NP, ADJP,
S	\rightarrow	NP-SBJ VP
VP	\rightarrow	VB NP PP-CLR NP-TMP

How To Parse?

Given a CFG and a sentence, how can we obtain the parse tree(s) for the sentence?

- Top-down parsing: repeat
- expand leftmost non-terminal using first production (save any alternative productions on backtrack stack)
- if we have matched entire sentence, quit (success)
- if we have generated a terminal which doesn't match sentence, pop choice point from stack (if stack is empty, quit (failure))
- Bottom-up parsing
- Inefficiency:
- the top-down parsers waste effort to explore trees that are not consistent with the input while
- the bottom-up parsers waste effort to explore trees that cannot lead to the start symbol S.

See SLP2 for details

Chomsky Normal Form (CNF)

N	Finite set of non-terminal symbols	NP, VP, S
Σ	Finite alphabet of terminal symbols	the, dog, eat
R	Set of production rules, each of the form $A \rightarrow \beta, \beta \in(\Sigma \cup N) *$ where $\beta=$ a single terminal in Σ or two non-terminals in N	$\mathrm{S} \rightarrow \mathrm{NP}$ VP Noun \rightarrow dog
S	A designated start symbol	

Chomsky Normal Form (CNF)

Any CFG can be converted into a weakly equivalent CNF (recognizing the same set of sentences as existing in the grammar but differing in their derivation).

Case 1: mix of terminals and non-terminals

Case 2: more than 2
non-terminals

INF-VP \rightarrow to VP

INF-VP \rightarrow TO VP
$\mathrm{TO} \rightarrow$ to

CNF Conversion

Case 3: single nonterminal
$\mathrm{A} \rightarrow{ }^{*} \mathrm{~B}$
$B \rightarrow \gamma$
$A \rightarrow \gamma$

S	\rightarrow NP VP
VP	\rightarrow VBD NP
VP	\rightarrow VP PP
Nominal	\rightarrow Nominal PP
Nominal	\rightarrow NN
Nominal	\rightarrow NNS
Nominal	\rightarrow PRP
PP	\rightarrow IN NP
NP	\rightarrow DT NN
NP	\rightarrow Nominal
NP	\rightarrow PRP\$ Nominal

VBD	\rightarrow shot
DT	\rightarrow an $/$ my
NN	\rightarrow elephant
NNS	\rightarrow pajamas
PRP	\rightarrow I
PRPS	\rightarrow my
IN	\rightarrow in

I shot an elephant in my pajamas

CNF Conversion

Case 3: single nonterminal

$$
\begin{aligned}
& \mathrm{A} \rightarrow{ }^{*} \mathrm{~B} \\
& \mathrm{~B} \rightarrow \gamma
\end{aligned}
$$

$A \rightarrow \gamma$

$\mathrm{S} \rightarrow \mathrm{NPVP}$	
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP	
$\mathrm{VP} \rightarrow \mathrm{VPPP}$	VBD \rightarrow shot
Nominal \rightarrow Nominal PP	DT \rightarrow an $\mid \mathrm{my}$
$\text { Nominal } \rightarrow \begin{gathered} \text { pajamas } \\ \text { elephant }\|\mid \end{gathered}$	PRP \rightarrow I
PP \rightarrow IN NP	PRP\$ \rightarrow my
NP \rightarrow DT NN	$\mathrm{IN} \rightarrow$ in
$N P \rightarrow \begin{gathered} \text { pajamas } \\ \text { elephant }\|\mid \end{gathered}$	
NP \rightarrow PRP\$ Nominal	

I shot an elephant in my pajamas

CYK Parsing

For parsing from a grammar expressed in CNF
Bottom-up dynamic programming

function CKY-PARSE(words, grammar) returns table

$$
\begin{aligned}
& \text { for } j \leftarrow \text { from } 1 \text { to } \operatorname{LENGTH}(\text { words }) \text { do } \\
& \text { for all }\{A \mid A \rightarrow \text { words }[j] \in \operatorname{grammar}\} \\
& \quad \text { table }[j-1, j] \leftarrow \text { table }[j-1, j] \cup A \\
& \text { for } i \leftarrow \text { from } j-2 \text { downto } 0 \text { do } \\
& \quad \text { for } k \leftarrow i+1 \text { to } j-1 \text { do } \\
& \quad \text { for all }\{A \mid A \rightarrow B C \in \text { grammar and } B \in \text { table }[i, k] \text { and } C \in \text { table }[k, j]\} \\
& \quad \text { table }[i, j] \leftarrow \text { table }[i, j] \cup A
\end{aligned}
$$

Figure 13.5 The CKY algorithm.

I	shot	an	elephant	in	my	pajamas

NP, PRP $[0,1]$						

I	shot	an	elephant	in	my	pajamas

NP, PRP $[0,1]$						
	VBD $[1,2]$					
		DT $[2,3]$				
		NP, NN $[3,4]$				

I	shot	an	elephant	in	my	pajamas
NP, PRP $[0,1]$						
$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$						
$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$						
$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$						
				$\underset{[4,5]}{\mathrm{IN}}$		
What phrases can be formed from "I shot an elephant in my pajamas"					$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	
						$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

In CNF, each non-terminal generates two non-terminals

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& {\left[_ { S } \left[\left[_{N P} I\right]\left[{ }_{V P} \text { shot an elephant in my pajamas }\right]\right.\right. \text {] }}
\end{aligned}
$$

If the left-side non-terminal spans tokens $i-j$, the right side must also span $i-j$, and there must be a single position k that separates them.

	1	shot	an	elephant	in	my	pajamas
$s \rightarrow$ npvp	NP, PRP $[0,1]$						
$\mathrm{vp} \rightarrow \mathrm{vBENP}$	$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$						
PP \rightarrow NNP	$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$						
$\mathrm{nP} \rightarrow$ DTNN							
NP \rightarrow paiamas							
NP \rightarrow PRPS Sominal	$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$						
$\underset{\text { vie } \rightarrow \text { shot }}{\substack{\text { vo } \\ \text { Di }}}$							
PRPs \rightarrow my							
N \rightarrow in					$[4,5]$		
	Does any rule generate PRP VBD?					$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	
							$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

	I	shot	an	elephant	in	my	pajamas
	$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$	\varnothing					
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$					
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$				
				$\begin{aligned} & \text { NP, NN } \\ & {[3,4]} \end{aligned}$			
$\begin{aligned} \mathrm{PRP} & \rightarrow \mathrm{I} \\ \mathrm{PRPS} & \rightarrow \mathrm{my} \\ \mathrm{IN} & \rightarrow \text { in } \end{aligned}$					$\underset{[4,5]}{\mathbb{N}}$		
	Does	rule ge				$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	
							NNS $[6,7]$

	I	shot	an	elephant	in	my	pajamas
	$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$	\varnothing					
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$					
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$				
				$\begin{aligned} & \text { NP, NN } \\ & {[3,4]} \end{aligned}$			
$\begin{aligned} \mathrm{PRP} & \rightarrow \mathrm{I} \\ \mathrm{PRPS} & \rightarrow \mathrm{my} \\ \mathrm{IN} & \rightarrow \text { in } \end{aligned}$					$\underset{[4,5]}{\mathbb{N}}$		
	Does	rule ge				$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	
							NNS $[6,7]$

	1	shot	an	elephant	in	my	pajamas
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing				
$\begin{aligned} \text { Nominal } & \left.\rightarrow \begin{array}{c} \text { pajamas } \\ \text { elephant } \end{array} \right\rvert\, \\ \mathrm{PP} & \rightarrow \text { IN NP } \\ \mathrm{NP} & \rightarrow \text { DT NN } \end{aligned}$			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$				
				NP, NN [3,4]			
					$\underset{[4,5]}{\mathbb{N}}$		
	Two pos	places olit k	or that			$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	
							NNS [6,7]

	I	shot	an	elephant	in	my	pajamas
	$\mathrm{NP}, \mathrm{PRP}$ $[0,1]$ VBD $[1,2]$						
S \rightarrow NP VP VP $\rightarrow \mathrm{VBD} \mathrm{NP}$ VP \rightarrow VP PP Nominal \rightarrow Nominal PP							
				$\begin{aligned} & \text { NP, NN } \\ & {[3,4]} \end{aligned}$			
					$\underset{[4,5]}{\mathbb{N}}$		
	Two possible	places plit k	or that			$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	
							NNS $[6,7]$

	I	shot	an	elephant	in	my	pajamas
	$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing				
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing				
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$				
$\begin{gathered} \text { NP } \rightarrow \text { PRPS Nominial } \\ \text { VBD } \rightarrow \text { shol } \\ \text { DT } \rightarrow \text { an Imy } \end{gathered}$				NP, NN $[3,4]$			
$\begin{aligned} & \text { PRP } \rightarrow 1 \\ & \text { PRPS } \rightarrow \text { my } \\ & \text { N } \rightarrow \text { in } \end{aligned}$					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$		
	Does	rule g NN?				$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	
							$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

I	shot	an	elephant	in	my	pajamas
NP, PRP $[0,1]$ \varnothing \varnothing VBD $[1,2]$	\varnothing					

1	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]	\varnothing					
	$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$					
		$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$			
			$\begin{aligned} & \mathrm{NP}, \mathrm{NN} \\ & {[3,4]} \end{aligned}$			
				$\underset{[4,5]}{\mathbb{N}}$		
Two possible places look for that split k					$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	
						NNS [6,7]

I	shot	an	elephant	in	my	pajamas
NP, PRP $[0,1]$ \varnothing \varnothing						
VBD $[1,2]$	\varnothing	VP $[1,4]$				

I	shot	an	elephant	in	my	pajamas

	$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} S \\ {[0,4]} \end{gathered}$			
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$			
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$			
$\begin{gathered} \text { NP } \rightarrow \text { Prps Sominial } \\ \text { VsD } \rightarrow \text { shot } \\ \text { DT } \rightarrow \text { an Imy } \end{gathered}$				$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$			
$\begin{aligned} \text { PRP } & \rightarrow \text { 1 } \\ \text { PRPS } & \rightarrow \text { my } \\ \text { IN } & \rightarrow \text { in } \end{aligned}$					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$		
						PRP\$ [5,6]	
							$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

I	shot	an	elephant	in	my	pajamas

	NP, PRP [0,1]	\varnothing	\varnothing	$\begin{gathered} S \\ {[0,4]} \end{gathered}$	\varnothing	\varnothing	
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { NP } \\ {[3,7]} \end{gathered}$
$\begin{gathered} \text { NP } \rightarrow \text { PrPs Sominial } \\ \text { Vso } \rightarrow \text { shol } \\ \text { DT } \rightarrow \text { an Imy } \end{gathered}$				$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
$\begin{gathered} \text { PRP } \rightarrow 1 \\ \text { PRPS } \rightarrow \text { my } \\ \text { N } \rightarrow \text { in } \end{gathered}$					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \text { PP } \\ {[4,7]} \end{gathered}$
						$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	$\begin{gathered} \text { NP } \\ {[5,7]} \end{gathered}$
							$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

I	shot	an	elephant	in	my	pajamas

	$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$	\varnothing	$\begin{array}{c\|c} & S \\ \hline & \\ {[0,4]} \end{array}$		\varnothing		$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
$\begin{aligned} \mathrm{S} & \rightarrow \mathrm{NP} \mathrm{VP} \\ \mathrm{VP} & \rightarrow \mathrm{VBD} \mathrm{NP} \\ \mathrm{VP} & \rightarrow \mathrm{VPPP} \end{aligned}$		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \text { NP } \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	
				$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
$\begin{aligned} & \text { ot } \rightarrow \text { an } \mid m y \\ & \text { PRP } \rightarrow 1 \\ & \text { PRPs } \rightarrow \text { my } \\ & \text { iN } \rightarrow \text { in } \end{aligned}$					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \mathrm{PP} \\ {[4,7]} \end{gathered}$
						$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	$\begin{gathered} \text { NP } \\ {[5,7]} \end{gathered}$
							NNS [6,7]

I	shot	an	elephant	in	my	pajamas

I	shot	an	elephant	in	my	pajamas

I	shot	an	elephant	in	my	pajamas

I	shot	an	elephant	in	my	pajamas

| I | shot | an | elephant | in | my | pajamas |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

।	shot	an	elephant	in	my	pajamas

	$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{S} \\ {[0,4]} \end{gathered}$	\varnothing	\varnothing	
S \rightarrow NP VP VP $\rightarrow \mathrm{VBD} \mathrm{NP}$ VP $\rightarrow \mathrm{VPPP}$ Nominal \rightarrow Nominal PP		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{VP}_{1}, \mathrm{VP}_{2} \\ {[1,7]} \end{gathered}$
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[2,7]} \end{gathered}$
				NP, NN $[3,4]$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \text { PP } \\ {[4,7]} \end{gathered}$
						$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	$\begin{gathered} \mathrm{NP} \\ {[5,7]} \end{gathered}$
							$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

।	shot	an	elephant	in	my	pajamas

	$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} S \\ {[0,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{aligned} & \mathrm{S}_{1}, \mathrm{~S}_{2} \\ & {[0,7]} \end{aligned}$
S \rightarrow NP VP VP \rightarrow VBD NP VP \rightarrow VP PP Nominal \rightarrow Nominal PP		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{VP}_{1}, \mathrm{VP}_{2} \\ {[1,7]} \end{gathered}$
Nominal \rightarrowpajamas \| elephant $\|\mid$ PP $\rightarrow \mathbb{I N N P}$ NP \rightarrow DT NN			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[2,7]} \end{gathered}$
				$\begin{gathered} \mathrm{NP}, \mathrm{NN} \\ {[3,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
					$\underset{\substack{\mathrm{IN} \\[4,5]}}{ }$	\varnothing	$\begin{gathered} \text { PP } \\ {[4,7]} \end{gathered}$
	Success! We've recognized a total of two valid parses					$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	$\begin{gathered} \mathrm{NP} \\ {[5,7]} \end{gathered}$
				Complexity?			$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

CFG

CYK allows us to:

- check whether a sentence in grammatical in the language defined by the CFG
- enumerate all possible parses for a sentence CFG

But it doesn't tell us on which one of those possible parses is most likely

- might help to to disambiguate
-> Probabilistic context-free grammar

Probabilistic Context-free Grammar (PCFG)

Probabilistic context-free grammar: each production is also associated with a probability.

N	Finite set of non-terminal symbols	$\mathrm{NP}, \mathrm{VP}, \mathrm{S}$
Σ	Finite alphabet of terminal symbols	the, dog, eat
R	Set of production rules, each of the form $A \rightarrow \beta[p], \beta \in(\Sigma \cup N) *$ $p=P(\beta \mid A)$	$\mathrm{S} \rightarrow \mathrm{NP}$ VP Noun \rightarrow dog
S	A designated start symbol	

Probabilistic Context-free Grammar (PCFG)

We can then calculate the probability of a parse for a given sentence

For a given parse tree T for sentence S comprised of n rules from R (each $A \rightarrow \beta$):

$$
P(T)=\prod_{i=1}^{n} P(\beta \mid A)
$$

In practice, we often want to find the single best parse with the highest probability for a given tree S :

$$
\begin{aligned}
& T^{*}(S)=\operatorname{argmax}_{T} P(T \mid S)=\operatorname{argmax}_{T} \frac{P(S \mid T) P(T)}{P(S)} \\
& =\operatorname{argmax}_{T} P(S \mid T) P(T)=\operatorname{argmax}_{T} P(T) \\
& P(S \mid T)=1, \text { since } T \text { includes all the words of } S
\end{aligned}
$$

We calculate the max probability parse using CKY by storing the max probability of each phrase within each cell as we build it up.

Probabilistic CYK for PCFG

function Probabilistic-CKY(words,grammar) returns most probable parse and its probability
for $j \leftarrow$ from 1 to LENGTH (words) do
for all $\{A \mid A \rightarrow$ words $[j] \in$ grammar $\}$

$$
\text { table }[j-1, j, A] \leftarrow P(A \rightarrow \text { words }[j])
$$

for $i \leftarrow$ from $j-2$ downto 0 do
for $k \leftarrow i+1$ to $j-1$ do
for all $\{A \mid A \rightarrow B C \in$ grammar, and table $[i, k, B]>0$ and table $[k, j, C]>0\}$
if $($ table $[i, j, A]<P(A \rightarrow B C) \times$ table $[i, k, B] \times \operatorname{table}[k, j, C])$ then
table $[i, j, A] \leftarrow P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C]$ $\operatorname{back}[i, j, A] \leftarrow\{k, B, C\}$
return BUILD_TREE(back[1, LENGTH(words), $S]$), table[1, LENGTH(words), S]

Estimate The Probabilities

Using the treebank to count the statistics

$$
P(\beta \mid A)=\frac{\operatorname{Count}(A \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(A \rightarrow \gamma)}=\frac{\operatorname{Count}(A \rightarrow \beta)}{\operatorname{Count}(A)}
$$

We can also estimate the probabilities using a (non-probabilistic) parser

- Parse the corpus, compute the statistics, and normalize the probabilities
- Might need to use the inside-outside algorithm for ambiguous sentences (see SLP2,3)

A		β	$P(\beta \mid N P)$
NP	\rightarrow	NP PP	0.092
NP	\rightarrow	DT NN	0.087
NP	\rightarrow	NN	0.047
NP	\rightarrow	NNS	0.042
NP	\rightarrow	DT JJ NN	0.035
NP	\rightarrow	NNP	0.034
NP	\rightarrow	NNP NNP	0.029
NP	\rightarrow	JJ NNS	0.027
NP	\rightarrow	QP -NONE-	0.018
NP	\rightarrow	NP SBAR	0.017
NP	\rightarrow	NP PP-LOC	0.017
NP	\rightarrow	JJ NN	0.015
NP	\rightarrow	DT NNS	0.014
NP	\rightarrow	CD	0.014
NP	\rightarrow	NN NNS	0.013
NP	\rightarrow	DT NN NN	0.013
NP	\rightarrow	NP CC NP	0.013

I	shot	an	elephant	in	my	pajamas
$\begin{gathered} \text { PRP:0.04 } \\ {[0,1]} \end{gathered}$						
$\begin{gathered} \text { VBD:0.04 } \\ {[1,2]} \end{gathered}$						
$\begin{gathered} \text { DT:0.05 } \\ {[2,3]} \end{gathered}$						
			$\begin{gathered} \mathrm{NN}: 0.03 \\ {[3,4]} \end{gathered}$			
Probaiblity of a terminal (word) given its tag				$\begin{aligned} & \text { IN:0.10 } \\ & {[4,5]} \end{aligned}$		
					PRP\$:	
$P(A \rightarrow \beta)$					$\begin{aligned} & 0.12 \\ & 15 \mathrm{kl} \end{aligned}$	
						$\begin{gathered} \text { NNS:0.01 } \\ {[6,7]} \end{gathered}$

I	shot	an	elephant	in	my	pajamas
$\begin{gathered} \text { PRP:0.04 } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing				
	$\begin{gathered} \text { VBD:0.04 } \\ {[1,2]} \end{gathered}$	\varnothing				
		$\begin{gathered} \text { DT:0.05 } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP:} \\ 0.00015 \\ {[2,4]} \end{gathered}$			
			$\begin{gathered} \text { NN:0.03 } \\ {[3,4]} \end{gathered}$			
				$\begin{gathered} \text { IN:0.10 } \\ {[4,5]} \end{gathered}$		
					$\begin{gathered} \text { PRP\$:0.12 } \\ {[5,6]} \end{gathered}$	
$b l e(2,4, N P)=P(\mathrm{NP} \rightarrow \mathrm{DT} \mathrm{NN}) \times \operatorname{table}(2,3, D T) \times \operatorname{table}(3,4, N N)$						$\begin{gathered} \text { NNS:0.01 } \\ {[6,7]} \end{gathered}$

I	shot	an	elephant	in	my	pajamas

$\begin{gathered} \text { PRP:0.04 } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing				
	$\begin{gathered} \text { VBD:0.04 } \\ {[1,2]} \end{gathered}$	\varnothing	$\begin{gathered} \text { VP: } \\ 0.0000006 \\ {[1,4]} \end{gathered}$			
		$\begin{gathered} \text { DT:0.05 } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \text { NP: } \\ 0.00015 \end{gathered}$ $[2,4]$			
			$\begin{gathered} \text { NN:0.03 } \\ {[3,4]} \end{gathered}$			
				$\begin{gathered} \text { IN:0.10 } \\ {[4,5]} \end{gathered}$		
We just calculated this value and can use it now					$\begin{gathered} \text { PRP\$:0.12 } \\ {[5,6]} \end{gathered}$	
$(1,4, V P)$	$P(\mathrm{VP} \rightarrow$	D NP) \times	able(1,2, V	D) $\times t a$	2, 4, NP)	$\begin{gathered} \text { NNS:0.01 } \\ {[6,7]} \end{gathered}$

I	shot	an	elephant	in	my	pajamas
$\begin{gathered} \text { PRP: -3.21 } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { S: -19.2 } \\ {[0,4]} \end{gathered}$			
	$\begin{gathered} \text { VBD: -3.21 } \\ {[1,2]} \end{gathered}$	\varnothing	$\begin{gathered} \text { VP: }-14.3 \\ {[1,4]} \end{gathered}$			
		$\begin{gathered} \text { DT: -3.0 } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \text { NP: -8.8 } \\ {[2,4]} \end{gathered}$			
			NN: -3.5 $[3,4]$			
				$\begin{gathered} \text { IN: - } 2.3 \\ {[4,5]} \end{gathered}$		
Note these values are getting very small! Better to add in log space					$\begin{aligned} & \text { PRP\$: } \\ & -2.12 \\ & {[5,6]} \end{aligned}$	
						NNS: -4.6 $[6,7]$

I shot an elephant in mv pajamasPRP: -3.21 $[0,1]$ \varnothing \varnothing $\mathrm{S}:-19.2$ $[0,4]$ \varnothing	\varnothing

1	shot	an	elephant	in	my	pajamas
PRP: -3.21 $[0,1]$ \varnothing \varnothing $\mathrm{S}:-19.2$ $[0,4]$ \varnothing \varnothing						
$\begin{gathered} \text { VBD: -3.21 } \\ {[1,2]} \end{gathered}$		\varnothing	$\begin{gathered} \text { VP: -14.3 } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { VP: -30.2 } \\ {[1,7]} \end{gathered}$
		$\begin{gathered} \text { DT: -3.0 } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \text { NP: -8.8 } \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { NP: - } 24.7 \\ {[2,7]} \end{gathered}$
			NN: -3.5 $[3,4]$	\varnothing	\varnothing	$\begin{gathered} \text { NP: -19.4 } \\ {[3,7]} \end{gathered}$
				$\begin{gathered} \text { IN: -2.3 } \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \text { PP: -13.6 } \\ {[4,7]} \end{gathered}$
For any phrase type spanning [i,j], we only need to keep the max probability given the assumptions of a PCFG					$\begin{aligned} & \text { PRP\$: } \\ & -2.12 \\ & {[5,6]} \end{aligned}$	$\begin{gathered} \text { NP: -9.0 } \\ {[5,7]} \end{gathered}$
						$\begin{gathered} \text { NNS: -4.6 } \\ {[6,7]} \end{gathered}$

I	shot	an	elephant	in	my	pajamas
$\begin{gathered} \text { PRP: }-3.21 \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { S: -19.2 } \\ {[0,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { S: -35.7 } \\ {[0,7]} \end{gathered}$
	$\begin{gathered} \text { VBD: }-3.21 \\ {[1,2]} \end{gathered}$	\varnothing	$\begin{gathered} \text { VP: - } 14.3 \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { VP:- }-30.2 \\ {[1,7]} \end{gathered}$
		$\begin{gathered} \text { DT: }-3.0 \\ {[2,3]} \end{gathered}$	$\begin{gathered} \text { NP: -8.8 } \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { NP: -24.7 } \\ {[2,7]} \end{gathered}$
			NN: -3.5 $[3,4]$	\varnothing	\varnothing	$\begin{gathered} \text { NP: -19.4 } \\ {[3,7]} \end{gathered}$
				$\begin{gathered} \text { IN: - } 2.3 \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \text { PP: }-13.6 \\ {[4,7]} \end{gathered}$
For any phrase type spanning [i,j], we only need to keep the max probability given the assumptions of a PCFG					$\begin{aligned} & \text { PRP\$: } \\ & -2.12 \\ & {[5,61} \end{aligned}$	$\begin{gathered} \text { NP: -9.0 } \\ {[5,7]} \end{gathered}$
						NNS: -4.6 $[6,7]$

Problems with PCFG

$P(T)=\prod_{i=1}^{n} P(\beta \mid A)$

Strong independence assumptions:

- Each production (e.g., NP \rightarrow DT NN) is independent of the rest of tree.
- In real use, productions are strongly dependent on their place in the tree.

	NP \rightarrow PRP	NP \rightarrow DT NN
	Pronoun	Non-Pronoun
Subject	91%	9%
Object	34%	66%

Problems with PCFG

$P(T)=\prod_{i=1}^{n} P(\beta \mid A)$
Strong independence assumptions:

	NP \rightarrow PRP	NP \rightarrow DT NN
	Pronoun	Non-Pronoun
Subject	91%	9%
Object	34%	66%

- With maximum likelihood estimator on Swithboard dataset:

$$
\begin{aligned}
& P(N P \rightarrow D T N N)=0.28 \\
& P(N P \rightarrow P R P)=0.25
\end{aligned}
$$

Splitting Non-Terminals/ Parent Annotation

Rather than having a single rule for each non-terminal $P(N P \rightarrow$ DT NN), we can condition on some context (Johnson 1998)

- $P_{\text {subject }}$ (NP \rightarrow DT NN)
- $P_{\text {object }}(N P \rightarrow D T N N)$

More generally, we can encode context by annotating each node in a tree with its parent (parent annotation)

- This lets us to learn different probabilities for:
- $N P^{S}$ (subject)
- $\mathrm{NP}_{\mathrm{Vp}}$ (object)

This Dramatically increases the size of the grammar \rightarrow less traıning data for each production (data sparsity)

Modern approaches search for best splits that maximize the training data likelihood (Petrov et al 2006)

Problems with PCFGs

Lack of lexical dependency: Lexical information in a PCFG has little influence on the overall parse structure

- The identity of the verbs, nouns, and prepositions might be crucial to disambiguate the parses.

Figure 14.5 Two possible parse trees for a prepositional phrase attachment ambiguity. The left parse is the sensible one, in which "into a bin" describes the resulting location of the sacks. In the right incorrect parse, the sacks to be dumped are the ones which are already "into a bin", whatever that might mean.

Figure 14.7 An instance of coordination ambiguity. Although the left structure is intuitively the correct one, a PCFG will assign them identical probabilities since both structures use exactly the same set of rules. After Collins (1999).

Lexicalized PCFG

Annotate each node with its head + POS tag of head

Figure 14.10 A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below we show the PCFG rules needed for this parse tree, internal rules on the left, and lexical rules on the right.

Lexicalized PCFG

Annotate each node with its head + POS tag of head

We can't estimate probabilities for such fine-grained productions well:

$$
\frac{\operatorname{Count}(V P(\text { dumped }, V B D) \rightarrow V B D(\text { dumped, } V B D) N P(\text { sacks, } N N S) P P(\text { into }, P))}{\operatorname{Count}(V P(\text { dumped }, V B D))}
$$

Different models make different independent assumptions to make this quantity tractable (Collins 1999, Charniak 1997)

Parameters in a Lexicalized PCFG

An example parameter in a PCFG:

$$
p(S \rightarrow N P \vee P)
$$

An example parameter in a Lexicalized PCFG:

$$
p\left(S(\text { saw }) \rightarrow_{2} N P(\text { man }) V P(s a w)\right.
$$

N	Finite set of non-terminal symbols	$\mathrm{NP}, \mathrm{VP}, \mathrm{S}$
Σ	Finite alphabet of terminal symbols	the, dog, eat
R	Set of production rules	
S	A designated start symbol	

R is a set of rules which take one of three forms:

$$
\begin{aligned}
& \circ X(h) \rightarrow_{1} Y_{1}(h) Y_{2}(w) \text { for } X \in N \text {, and } Y_{1}, Y_{2} \in N \text {, and } h, w \in \sum \\
& \circ X(h) \rightarrow_{2} Y_{1}(w) Y_{2}(h) \text { for } X \in N \text {, and } Y_{1}, Y_{2} \in N \text {, and } h, w \in \sum \\
& \circ X(h) \rightarrow h \text { for } X \in N \text {, and } h \in \sum
\end{aligned}
$$

Parsing with Lexicalized PCFG

For PCFG in Chomsky Normal Form, we can parse an n word sentence in

$$
O\left(n^{3} \times|N|^{3}\right)
$$

Lexicalized PCFG: the grammar looks just like a Chomsky normal form CFG, but with potentially $O\left(|\Sigma|^{2} \times|N|^{3}\right)$ possible rules.
Naively, parsing using the dynamic programming algorithm will take $O\left(n^{3} \times\right.$ $\left.|\Sigma|^{2} \times|N|^{3}\right)$ time. But $|\Sigma|^{2}$ can be huge!!
Crucial observation: at most $O\left(n^{2} \times|N|^{3}\right)$ rules can be applicable to a given sentence $w_{1}, w_{2}, \ldots, w_{n}$ of length n. This is because any rules which contain a lexical item that is not one of $w_{1}, w_{2}, \ldots, w_{n}$, can be safely discarded.
The result: we can parse in $O\left(n^{5} \times|N|^{3}\right)$ time.

