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Syntax
With syntax, we’re moving from labels for discrete items - documents (sentiment 
analysis), tokens (POS tagging, NER) - to the structure between items.

Syntax is fundamentally about the hierarchical structure of language and (in some 
theories) which sentences are grammatical in a language 

words → phrases → clauses → sentences



Why Is Syntax Important?
Foundation for semantic analysis (on many levels of representation: 
semantic roles, compositional semantics, frame semantics)

Humans communicate complex ideas by composing words together into 
bigger units to convey complex meanings



Why Is Syntax Important?
Linguistic typology; relative positions of subjects (S), objects 
(O) and verbs (V)



Why Is Syntax Important?
Strong representation for discourse analysis (e.g., 
coreference resolution)

https://en.wikipedia.org/wiki/Discourse_analysis



Formalisms

Phrase structure grammar
(Chomsky 1957)

Dependency grammar
(Mel’čuk 1988; Tesnière 1959; Pāṇini)



Constituency
Groups of words (“constituents”) behave as single units

“Behave” = show up in the same distributional environments as single units 
(e.g., the substitution test)

Substitution test for POS: if a word is replaced by another word, does the 
sentence remain grammatical?

Substitution test for Constituency: if a constituent is replaced by another 
constituent of the same type, does the sentence remain grammatical?



Context-Free Grammar (CFG)
A CFG gives a formal way to define what meaningful constituents are 
and exactly how  a constituent is formed out of other constituents (or 
words).  It defines valid structure in a language (i.e., defining how 
symbols in a language combine to form valid structures)



Context-Free Grammar (CFG)

𝑁 Finite set of non-terminal symbols NP, VP, S

𝛴 Finite alphabet of terminal symbols the, dog, eat

𝑅 Set of production rules, each of the 
form 𝐴 → 𝛽, 𝛽 ∈ 𝛴 ∪ 𝑁 ∗

S → NP VP
Noun → dog

𝑆 A designated start symbol



Derivation
Given a CFG, a derivation is the sequence of productions used to 
generate a string of words/terminal symbols (e.g., a sentence), often 
visualized as a parse tree.

NP VP  cats VP  cats chase NP

the flight a flight the morning flight

morning



Language
The strings of words (e.g., sentences) are called as 
“derivable from the start symbol (S)”

The formal language defined by a CFG is the set of strings 
derivable from S

S NP VP cats VP  cats chase NP  cats chase mice



Preterminals
It is convenient to include a set of symbols called preterminals
(corresponding to the parts of speech) which can be directly rewritten 
as terminals (words)

This allows us to separate the productions into a set which generates 
sequences of preterminals (the “grammar”) and those which rewrite 
the preterminals as terminals (the “dictionary”)



Grouping Alternates
To make the grammar more compact, we group productions 
with the same left-hand side:

S     NP VP

NP  N | ART N | ART ADJ N

VP  V | V NP



Example



Bracketed Notation

[NP [Det the] [Nominal [[Noun flight]]]



Constituents
Every internal node is a phrase

◦ my pajamas 

◦ in my pajamas 

◦ elephant in my pajamas 

◦ an elephant in my pajamas 

◦ shot an elephant in my pajamas 

◦ I shot an elephant in my pajamas

Each phrase could be replaced by 
another of the same type of constituent



Sentence
Rule Description Example

S → VP Imperative • Show me the right way

S → VP NP Declarative • The dog barks

S → Aux VP NP Yes/no 
questions 

• Will you show me the right way?

S → Wh-NP VP
S → Wh-NP Aux NP VP 

wh-
questions

• What airlines fly from Burbank to Denver?
• What flights do you have from Burbank to 

Tacoma Washington?



Noun Phrases
NP → Pronoun | Proper-noun | Det Nominal

Nominal → Nominal PP
◦ An elephant [PP in my pajamas] 

◦ The cat [PP on the floor] [PP under the table] [PP next to the dog]

Nominal → RelClause, RelClause → (who|that) VP : A relative pronoun 
(that, which) in a relative clause can be the subject or object of the 
embedded verb.

◦ A flight [RelClause that serves breakfast]

◦ A flight [RelClause that I got]



Verb Phrases

VP → Verb disappear

VP → Verb NP prefer a morning flight

VP → Verb NP PP prefer a morning flight on Monday

VP → Verb PP leave on Wednesday

VP → Verb S I think [S I want a new flight]

VP → Verb VP want [VP to fly today]

Not every verb can appear in each of these productions



Verb Phrases

VP → Verb * I filled

VP → Verb NP * I exist the morning flight

VP → Verb NP PP * I exist the morning flight on Monday

VP → Verb PP * I filled on Wednesday

VP → Verb S * I exist [S I want a new flight]

VP → Verb VP * I fill [VP to fly today]

Not every verb can appear in each of these productions



Subcategorization
Verbs are compatible with different complements 
◦ Transitive verbs take direct object NP (“I filled the tank”)

◦ Intransitive verbs don’t (“I exist”)

The set of possible complements of a verb is its 
subcategorization frame.



Coordination

NP → NP and NP the dogs and the cats

Nominal → Nominal and 
Nominal

dogs and cats

VP → VP and VP I came and saw and conquered

JJ → JJ and JJ beautiful and red

S → S and S I came and I saw and I conquered



Ambiguity
Most sentences will have more than one parse

Generally different parses will reflect different meanings …
◦ Attachment ambiguity: a particular constituent can be attached to 

the parse tree at more than one place

“I saw the man with a telescope.”

Can attach PP (“with a telescope”) under NP or VP

◦ Coordination ambiguity: different sets of phrases can be conjoined by 
a conjunction like “and”:

“old man and woman” -> [old [men and women]] or [[old man] and [woman]]?



An Example
I shot an elephant in my pajamas



Evaluation
Parseval (1991): represent each tree as a 
collection of tuples.

Calculate precision, recall, F1 from these 
collections of tuples

< 𝑙1, 𝑖1, 𝑗1 >,… ,< 𝑙𝑛, 𝑖𝑛, 𝑗𝑛 >
◦ 𝑙𝑘: label for the 𝑘-th phrase

◦ 𝑖𝑘: index for the first word in the 𝑘-th phrase

◦ 𝑗𝑘: index for the last word in the 𝑘-th phrase

•<S, 1, 7> 
•<NP, 1,1> 
•<VP, 2, 7> 
•<VP, 2, 4> 
•<NP, 3, 4> 
•<Nominal, 4, 4> 
•<PP, 5, 7> 
•<NP, 6, 7>



Evaluation

•<S, 1, 7> 
•<NP, 1,1> 
•<VP, 2, 7> 
•<VP, 2, 4> 
•<NP, 3, 4> 
•<Nominal, 4, 4> 
•<PP, 5, 7> 
•<NP, 6, 7>

•<S, 1, 7> 
•<NP, 1,1> 
•<VP, 2, 7> 
•<NP, 3, 7> 
•<Nominal, 4, 7> 
•<Nominal, 4, 4> 
•<PP, 5, 7> 
•<NP, 6, 7>

• Precision (𝑃) = number 
of tuples in the 
predicted tree also in 
correct tree, divided by 
number of tuples in the 
predicted tree = 5/7

• Recall (𝑅) = number of 
tuples in the predicted 
tree also in correct tree, 
divided by number of 
tuples in the correct 
tree = 5/7

• 𝐹1 =
2𝑃𝑅

𝑃+𝑅



Evaluation
Nonetheless, phrasal constituents are not always an appropriate unit for 
parser evaluation.

◦ In lexically-oriented grammars, such as CCG and LFG, the ultimate goal is to extract 
the appropriate predicate-argument relations or grammatical dependencies, rather 
than a specific derivation.

◦ We can use alternative evaluation metrics based on the precision and recall of 
labeled dependencies whose labels indicate the grammatical relations (Lin 1995, 
Carroll et al. 1998, Collins et al. 1999).

Why not measuring how many sentences are parsed correctly, instead of 
measuring component accuracy in the form of constituents or dependencies?

◦ The later gives us a more fine-grained metric

◦ Sentences can be long 

◦ Distinguish between a parse that got most of the parts wrong and one that just got 
one part wrong



CFGs
Building a CFG by hand is really hard

To capture all (and only) grammatical sentences, need to 
exponentially increase the number of categories (e.g., 
detailed subcategorization info)



Treebanks
Rather than create the rules by hand, we can annotate sentences with 
their syntactic structure and then extract the rules from the annotations

Treebanks: collections of sentences annotated with syntactic structure 
(e.g., Penn Treebank)



Penn Treebank



How To Parse?
Given a CFG and a sentence, how can we obtain the parse tree(s) 
for the sentence?
◦ Top-down parsing: repeat

◦ expand leftmost non-terminal using first production (save any alternative 
productions on backtrack stack)

◦ if we have matched entire sentence, quit (success)

◦ if we have generated a terminal which doesn't match sentence, pop 
choice point from stack (if stack is empty, quit (failure))

◦ Bottom-up parsing
◦ Inefficiency: 

◦ the top-down parsers waste effort to explore trees that are not 
consistent with the input while 

◦ the bottom-up parsers waste effort to explore trees that cannot lead to 
the start symbol S.

See SLP2 for details

Dynamic programming parsing, i.e., CYK parsing (Cocke-Kasami-Younger)



Chomsky Normal Form (CNF)

𝑁 Finite set of non-terminal symbols NP, VP, S

𝛴 Finite alphabet of terminal symbols the, dog, eat

𝑅 Set of production rules, each of the form 
𝐴 → 𝛽, 𝛽 ∈ 𝛴 ∪ 𝑁 ∗

where 𝛽 = a single terminal in 𝛴 or 
two non-terminals in 𝑁

S → NP VP
Noun → dog

𝑆 A designated start symbol



Chomsky Normal Form (CNF)
Any CFG can be converted into a weakly equivalent CNF (recognizing the same 
set of sentences as existing in the grammar but differing in their derivation).

INF-VP → to VP

INF-VP → TO VP
TO → to

Case 1: mix of terminals 
and non-terminals

NP → DT JJ NN

NP → X NN
X → DT JJ

Case 2: more than 2 
non-terminals



CNF Conversion

I shot an elephant in my pajamas

A →∗ B
B → 𝛾

A → 𝛾

Case 3: single non-
terminal



CNF Conversion

I shot an elephant in my pajamas

A →∗ B
B → 𝛾

A → 𝛾

Case 3: single non-
terminal



CYK Parsing
For parsing from a grammar expressed in CNF

Bottom-up dynamic programming









CNF
In CNF, each non-terminal generates two non-terminals

S → NP VP 

[S [NP I] [VP shot an elephant in my pajamas] ]

If the left-side non-terminal spans tokens 𝑖 − 𝑗, the right 
side must also span 𝑖 − 𝑗, and there must be a single 
position k that separates them.

















































Complexity?



CFG
CYK allows us to:

◦ check whether a sentence in grammatical in the language defined by the CFG

◦ enumerate all possible parses for a sentence CFG

But it doesn’t tell us on which one of those possible parses is most likely
◦ might help to to disambiguate

-> Probabilistic context-free grammar



Probabilistic Context-free 
Grammar (PCFG)
Probabilistic context-free grammar: each production is also associated 
with a probability.

𝑁 Finite set of non-terminal symbols NP, VP, S

𝛴 Finite alphabet of terminal symbols the, dog, eat

𝑅 Set of production rules, each of the form 
𝐴 → 𝛽 𝑝 , 𝛽 ∈ 𝛴 ∪ 𝑁 ∗

𝑝 = 𝑃(𝛽|𝐴)

S → NP VP
Noun → dog

𝑆 A designated start symbol



Probabilistic Context-free 
Grammar (PCFG)
We can then calculate the probability of a parse for a given sentence

For a given parse tree 𝑇 for sentence 𝑆 comprised of 𝑛 rules from 𝑅
(each 𝐴 → 𝛽):

𝑃 𝑇 = ς𝑖=1
𝑛 𝑃(𝛽|𝐴)

In practice, we often want to find the single best parse with the highest 
probability for a given tree 𝑆:

𝑇∗(𝑆) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑇𝑃 𝑇 𝑆 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑇
𝑃 𝑆 𝑇 𝑃(𝑇)

𝑃(𝑆)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑇𝑃 𝑆 𝑇 𝑃 𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑇𝑃 𝑇

We calculate the max probability parse using CKY by storing the 
max probability of each phrase within each cell as we build it up.

𝑃 𝑆 𝑇 =1, since 𝑇 includes all the words of S



Probabilistic CYK for PCFG



Estimate The Probabilities
Using the treebank to count the statistics

𝑃 𝛽 𝐴 =
𝐶𝑜𝑢𝑛𝑡(𝐴 → 𝛽)

σ𝛾 𝐶𝑜𝑢𝑛𝑡(𝐴 → 𝛾)
=

𝐶𝑜𝑢𝑛𝑡(𝐴 → 𝛽)

𝐶𝑜𝑢𝑛𝑡(𝐴)

We can also estimate the probabilities using a (non-probabilistic) 
parser
◦ Parse the corpus, compute the statistics, and normalize the probabilities

◦ Might need to use the inside-outside algorithm for ambiguous sentences 
(see SLP2,3)





















Problems with PCFG
𝑃 𝑇 = ς𝑖=1

𝑛 𝑃(𝛽|𝐴)

Strong independence assumptions:
◦ Each production (e.g., NP → DT NN) is independent of the 

rest of tree.

◦ In real use, productions are strongly dependent on their 
place in the tree.

NP → DT NNNP → PRP



Problems with PCFG
𝑃 𝑇 = ς𝑖=1

𝑛 𝑃(𝛽|𝐴)

Strong independence assumptions:

◦ With maximum likelihood estimator on Swithboard dataset:

NP → DT NNNP → PRP



Splitting Non-Terminals/
Parent Annotation
Rather than having a single rule for each non-terminal P(NP → DT NN), 
we can condition on some context (Johnson 1998)

◦ Psubject(NP → DT NN)

◦ Pobject(NP → DT NN)

More generally, we can encode context by annotating each node in a 
tree with its parent (parent annotation)

◦ This lets us to learn different probabilities for:
◦ NPS (subject)

◦ NPVP (object)

This Dramatically increases the size of the grammar → less training 
data for each production (data sparsity)

Modern approaches search for best splits that maximize the training 
data likelihood (Petrov et al 2006)



Problems with PCFGs
Lack of lexical dependency: Lexical information in a PCFG has little influence 
on the overall parse structure

◦ The identity of the verbs, nouns, and prepositions might be crucial to disambiguate the parses.



Lexicalized PCFG
Annotate each node with its head + POS tag of head



Lexicalized PCFG
Annotate each node with its head + POS tag of head

We can’t estimate probabilities for such fine-grained productions well:

Different models make different independent assumptions to make this 
quantity tractable (Collins 1999, Charniak 1997)



Parameters in a Lexicalized PCFG
An example parameter in a PCFG: 

𝑝(S → NP VP)

An example parameter in a Lexicalized PCFG:

𝑝(S(saw) →2 NP(man) VP(saw)

R is a set of rules which take one of three forms: 
◦ 𝑋 ℎ →1 𝑌1 ℎ 𝑌2 𝑤 for 𝑋 ∈ 𝑁, and 𝑌1, 𝑌2 ∈ 𝑁, and ℎ, 𝑤 ∈ σ

◦ 𝑋 ℎ →2 𝑌1 𝑤 𝑌2 ℎ for 𝑋 ∈ 𝑁, and 𝑌1, 𝑌2 ∈ 𝑁, and ℎ, 𝑤 ∈ σ

◦ 𝑋 ℎ → ℎ for 𝑋 ∈ 𝑁, and ℎ ∈ σ

𝑁 Finite set of non-terminal symbols NP, VP, S

𝛴 Finite alphabet of terminal symbols the, dog, eat

𝑅 Set of production rules

𝑆 A designated start symbol



Parsing with Lexicalized PCFG
For PCFG in Chomsky Normal Form, we can parse an 𝑛 word sentence in 

𝑂(𝑛3 × 𝑁 3)

Lexicalized PCFG: the grammar looks just like a Chomsky normal form CFG, 
but with potentially 𝑂(|σ|2 × 𝑁 3) possible rules. 

Naively, parsing using the dynamic programming algorithm will take 𝑂(𝑛3 ×
|σ|2 × 𝑁 3) time. But |σ|2 can be huge!! 

Crucial observation: at most 𝑂(𝑛2 × 𝑁 3) rules can be applicable to a given 
sentence 𝑤1, 𝑤2, … , 𝑤𝑛 of length 𝑛. This is because any rules which contain a 
lexical item that is not one of 𝑤1, 𝑤2, … , 𝑤𝑛, can be safely discarded.

The result: we can parse in 𝑂(𝑛5 × 𝑁 3) time. 

http://www.cs.columbia.edu/~mcollins/cs4705-fall2018/slides/parsing3.pdf

http://www.cs.columbia.edu/~mcollins/cs4705-fall2018/slides/parsing3.pdf

