Bag of Word Models

Bonan Min
bonanmin@gmail.com

Some slides are based on class materials from Ralph Grishman, Thien Huu Nguyen
Bag of Words Models

When do we need elaborate linguistic analysis?

Look at NLP applications

- document retrieval (a.k.a., information retrieval)
- opinion mining
- association mining

See how far we can get with document-level bag-of-words models

- and introduce some of our mathematical approaches
Application 1: Information Retrieval

Task: given query = list of keywords, identify and rank relevant documents from collection

Basic idea:
 ◦ Find documents whose set of words most closely matches words in query
Vector Space Model

Suppose the document collection has n distinct words, w_1, \ldots, w_n

Each document is characterized by an n-dimensional vector whose i^{th} component is the frequency of word w_i in the document

Example

- $D1 = [\text{The cat chased the mouse.}]$
- $D2 = [\text{The dog chased the cat.}]$
- $W = [\text{The, chased, dog, cat, mouse}]$ (n = 5)
- $V1 = [2, 1, 0, 1, 1]$
- $V2 = [2, 1, 1, 1, 0]$
Weighting the Components

Unusual words like *elephant* determine the topic much more than common words such as “the” or “have”

- can ignore words on a *stop list* or
- weight each term frequency t_{fi} by its inverse document frequency idf_i

\[
idf_i = \log\left(\frac{N}{n_i} \right)
\]

\[
w_i = tf_i \times idf_i
\]

where $N = \text{size of collection}$ and $n_i = \text{number of documents containing term } i$
Cosine Similarity

Define a similarity metric between topic vectors.

A common choice is *cosine similarity* (normalized dot product):

$$\text{sim}(A, B) = \frac{\sum_i a_i \times b_i}{\sqrt{\sum_i a_i^2} \times \sqrt{\sum_i b_i^2}}$$

The cosine similarity metric is the cosine of the angle between the term vectors.
Verdict: a Success

For heterogeneous text collections, the vector space model, tf-idf weighting, and cosine similarity have been the basis for successful document retrieval for over 50 years

- stemming required for some languages
- limited resolution: returns documents, not answers
Application 2: Opinion Mining

Task: judge whether a document expresses a positive or negative opinion (or no opinion) about an object or topic
- *classification* task
- valuable for producers/marketers of all sorts of products

Simple strategy: rule-based approach
- make lists of positive and negative words
- see which predominate in a given document (and mark as ‘no opinion’ if there are few words of either type)
- problem: hard to make such lists
- hard to switch to different domains/labels/languages

<table>
<thead>
<tr>
<th>Training Examples</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simply loved it</td>
<td>Positive</td>
</tr>
<tr>
<td>Most disgusting food I have ever had</td>
<td>Negative</td>
</tr>
<tr>
<td>Stay away, very disgusting food!</td>
<td>Negative</td>
</tr>
<tr>
<td>Menu is absolutely perfect, loved it!</td>
<td>Positive</td>
</tr>
<tr>
<td>A really good value for money</td>
<td>Positive</td>
</tr>
<tr>
<td>This is a very good restaurant</td>
<td>Positive</td>
</tr>
<tr>
<td>Terrible experience!</td>
<td>Negative</td>
</tr>
<tr>
<td>This place has best food</td>
<td>Positive</td>
</tr>
<tr>
<td>This place has most pathetic serving food!</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Training a Classification Model

Supersede the rule-based approach

- A generic (task-independent) learning algorithm to train a classifier/function/model from a set of labeled examples
- The classifier learns, from these labeled examples, the characteristics of a new text should have in order to be assigned to some label

Advantages

- Annotating/locating training examples is cheaper than writing rules
- Easier updates to changing conditions (annotate more data with new labels for new domains)
Naive Bayes Classification

Identify most likely class

\[s = \arg\max_t P(t | W) \]
\[t \in \{\text{pos, neg}\} \]

Use Bayes’ rule

\[
\arg\max_t P(t | W) = \frac{\arg\max_t P(W | t)P(t)}{P(W)}
\]
\[= \arg\max_t P(W | t)P(t) \]
\[= \arg\max_t P(w_1, ..., w_n | t)P(t) \]
\[= \arg\max_t \prod_i P(w_i | t)P(t) \]

Doesn’t change if changing \(t \), so we’re going to drop it

Based on the naïve assumption of independence of the word probabilities
Training

Estimate probabilities from the training corpus (N documents) using maximum likelihood estimators

\[
P(t) = \frac{\text{count (docs labeled } t\text{)}}{N}
\]

\[
P(w_i | t) = \frac{\text{count (docs labeled } t\text{ containing } w_i\text{)}}{\text{count (docs labeled } t\text{)}}
\]
Text Classification: Flavors

Bernoulli model: use presence (/ absence) of a term in a document as feature
- *formulas on previous slide*

Multinomial model: based on frequency of terms in documents:
- \[P(t) = \frac{\text{total length of docs labeled } t}{\text{total size of corpus}} \]
- \[P(w_i | t) = \frac{\text{count (instances of } w_i \text{ in docs labeled } t)}{\text{total length of docs labeled } t} \]

Better performance on long documents
Text Classification: Flavors

Bernoulli model: use presence (/ absence) of a term in a document as feature
 ◦ formulas on previous slide

Multinomial model: based on frequency of terms in documents:
 ◦ \(P(t) = \frac{\text{total length of docs labeled } t}{\text{total size of corpus}} \)

 ◦ \(P(w_i | t) = \frac{\text{count (instances of } w_i \text{ in docs labeled } t)}{\text{total length of docs labeled } t} \)

 Better performance on long documents
The Importance of Smoothing

Suppose a glowing review SLP2 (with lots of positive words) includes one word, “mathematical”, previously seen only in negative reviews

\[
P(\text{positive} | \text{SLP2}) = 0
\]

because \(P(\text{“mathematical”} | \text{positive}) = 0\)

The maximum likelihood estimate is poor when there is very little data

We need to ‘smooth’ the probabilities to avoid this problem
Add-One (Laplace) Smoothing

A simple remedy is to add 1 to each count
- for the conditional probabilities $P(w \mid t)$: Add 1 to each $c(w, t)$
- Increase the denominator by number of unique words ($|V|$). That is, add $|V|$ to $c(t)$ to keep them as probabilities (sum up to 1)

$$\sum_{w \in V} p(w|t) = 1$$
An Example

$$P(t) = \frac{N_t}{N}$$

$$P(w \mid t) = \frac{\text{count}(w, t) + 1}{\text{count}(t) + |V|}$$

<table>
<thead>
<tr>
<th>Doc</th>
<th>Words</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1 Chinese Beijing Chinese</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>Chinese Chinese Shanghai</td>
<td>c</td>
</tr>
<tr>
<td>3</td>
<td>Chinese Macao</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>Tokyo Japan Chinese</td>
<td>j</td>
</tr>
<tr>
<td>Test</td>
<td>5 Chinese Chinese Chinese Tokyo Japan</td>
<td>?</td>
</tr>
</tbody>
</table>

Priors:
$$P(t) = \frac{3}{4}$$
$$P(j) = \frac{1}{4}$$

Conditional Probabilities:
$$P(\text{Chinese} \mid c) = \frac{5+1}{8+6} = \frac{6}{14} = \frac{3}{7}$$
$$P(\text{Tokyo} \mid c) = \frac{0+1}{8+6} = \frac{1}{14} \leftarrow 0$$
$$P(\text{Japan} \mid c) = \frac{0+1}{8+6} = \frac{1}{14} \leftarrow 0$$
$$P(\text{Chinese} \mid j) = \frac{1+1}{3+6} = \frac{2}{9}$$
$$P(\text{Tokyo} \mid j) = \frac{1+1}{3+6} = \frac{2}{9}$$
$$P(\text{Japan} \mid j) = \frac{1+1}{3+6} = \frac{2}{9}$$

Choosing a class:
$$P(c \mid d5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003 \leftarrow 0$$
$$P(j \mid d5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001$$

$$P(t)$$ $$P(w \mid t)$$
Some Useful Resources Using NLTK

Sentiment Analysis with Python NLTK Text Classification

- http://text-processing.com/demo/sentiment/

NLTK Code (simplified classifier)

Problems with Bag-of-Words Models

Ambiguous terms: is “low” a positive or a negative term?
- “low” can be positive: “low price”
- or negative: “low quality”

Negation: How to handle “the equipment never failed”? A trick:
- modify words following negation
 “the equipment never NOT_failed”
- treat them as a separate ‘negated’ vocabulary

How far can this trick go?
e.g., “the equipment never failed and was cheap to run”
 → “the equipment never NOT_failed NOT_and NOT_was NOT_cheap NOT_to
 NOT_run”
 have to determine scope of negation
Verdict: Mixed

A simple bag-of-words strategy with a NB model works quite well for simple reviews referring to a single item

- Very fast, low storage requirements
- Robust to irrelevant features
 - Irrelevant features cancel each other without affecting results
- Very good in domains with many equally important features
- Optimal if the independence assumptions hold
 - If assumed independence is correct, then it is the Bayes Optimal Classifier for problem

but fails

- for ambiguous terms
- for negation
- for comparative reviews
- to reveal aspects of an opinion
 - *the car looked great and handled well, but the wheels kept falling off*
Application 3: Association Mining

Goal: find interesting relationships among attributes of an object in a large collection ...

Objects with attribute A also have attribute B
 ◦ e.g., “people who bought A also bought B”

For text: documents with term A also have term B
 ◦ widely used in scientific and medical literature
Bag-of-Words

Simplest approach
- look for words x and y for which frequency (x and y in same document) $>>$ frequency of x * frequency of y
- Or use Mutual Information:

$$pmi(x; y) \equiv \log \frac{p(x, y)}{p(x)p(y)}$$

Doesn’t work well
- want to find names (of companies, products, genes), not individual words
- interested in specific types of terms
- want to learn from a few examples
 - need contexts to avoid noise
Beyond Bag-of-Words Models

Effective Text Association Mining Needs
- Name recognition
- Term classification
- Ability to learn patterns (lexical sequence or syntactic)

Semantic and syntactic analyzers at varying levels can help

the duration of diabetes mellitus *was the significant risk factor for* cataracts
Conclusion

We have reviewed bag-of-words models in the context of three tasks

- Document retrieval
- Opinion mining
- Association mining

Some tasks can be handled effectively (and very simply) by bag-of-words models,

but most benefit from an analysis of language structure