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ABSTRACT 
The Web brings an open-ended set of semantic relations. Discovering the significant types is 
very challenging. Unsupervised algorithms have been developed to extract relations from a 
corpus without knowing the relation types in advance, but most of them rely on tagging 
arguments of predefined types. One recently reported system is able to jointly extract relations 
and their argument semantic classes, taking a set of relation instances extracted by an open IE 
(Information Extraction) algorithm as input. However, it cannot handle polysemy of relation 
phrases and fails to group many similar (“synonymous”) relation instances because of the 
sparseness of features. In this paper, we present a novel unsupervised algorithm that provides a 
more general treatment of the polysemy and synonymy problems. The algorithm incorporates 
various knowledge sources which we will show to be very effective for unsupervised relation 
extraction. Moreover, it explicitly disambiguates polysemous relation phrases and groups 
synonymous ones. While maintaining approximately the same precision, the algorithm achieves 
significant improvement on recall compared to the previous method. It is also very efficient. 
Experiments on a real-world dataset show that it can handle 14.7 million relation instances and 
extract a very large set of relations from the Web.  
 
Keywords: Information Extraction, semantics, Web, large-scale, unsupervised learning, relation 
extraction 
 
 
INTRODUCTION 
 
Relation extraction aims at discovering semantic relations between entities. It is an important 
task that has many applications in answering factoid questions, building knowledge bases and 
improving search engine relevance. In the era of the Internet, the Web has become a massive 
potential source of such relations. However, there are challenges for Web-scale open-domain 
relation extraction: the huge and fast-growing scale, a mixed genre of documents and potentially 
infinite types of relations it carries. To extract these relations, a system should not assume a fixed 
set of relation types, nor rely on a fixed set of relation argument types. It also should be able to 
efficiently handle a very large amount of data. 
    The past decade has seen some promising solutions. Unsupervised relation extraction (URE) 
algorithms extract relations from a corpus without knowing the relations in advance. However, 
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most algorithms (Hasegawa et al., 2004, Shinyama and Sekine, 2006, Chen et. al, 2005) rely on 
tagging predefined types of entities as relation arguments, and thus are not well-suited for open 
domain relation extraction.  
    Recently, Kok and Domingos (2008) proposed Semantic Network Extractor (SNE), which 
generates argument semantic classes and sets of synonymous relation phrases at the same time. It 
avoids the requirement of tagging relation arguments of predefined types. However, SNE has 2 
limitations: 1) following previous URE algorithms, it only uses features from the set of input 
relation instances for clustering.  Empirically we found that it fails to group many relevant 
relation instances. These features, such as the surface forms of arguments and lexical sequences 
in between, are very sparse in practice. In contrast, there exist several well-known corpus-level 
semantic resources that can be automatically derived from a source corpus and are shown to be 
useful for generating the key elements of a relation: its 2 argument semantic classes and a set of 
synonymous phrases. For example, semantic classes can be derived from a source corpus with 
contextual distributional similarity and web table co-occurrences. The “synonymy” 2 problem for 
clustering relation instances could potentially be better solved by adding these resources. 2) SNE 
assumes that each entity or relation phrase belongs to exactly one cluster, thus is not able to 
effectively handle polysemy of relation phrases3. An example of a polysemous phrase is be the 
currency of  as in 2 triples <Euro, be the currency of, Germany> and <authorship, be the 
currency of, science>. As the target corpus expands from mostly news to the open web, 
polysemy becomes more important as input covers a wider range of domains. In practice, around 
22% (section 3) of relation phrases are polysemous. Failure to handle these cases significantly 
limits its effectiveness. 
    To move towards a more general treatment of the polysemy and synonymy problems, we 
present a novel algorithm WEBRE for open-domain large-scale unsupervised relation extraction 
without predefined relation or argument types (initially presented in Min et al., 2012). The major 
contributions of this work are: 

• WEBRE incorporates a wide range of corpus-level semantic resources for improving 
relation extraction. The effectiveness of each knowledge source and their combination 
are studied and compared. To the best of our knowledge, it is the first to combine and 
compare them for unsupervised relation extraction. 

• WEBRE explicitly disambiguates polysemous relation phrases and groups synonymous 
phrases, thus it fundamentally avoids the limitation of previous methods. 

• Experiments on the Clueweb09 dataset (lemurproject.org/clueweb09.php) show that 
WEBRE is effective and efficient. We present a large-scale evaluation and show that 
WEBRE can extract a very large set of high-quality relations. Compared to the closest 
prior work, WEBRE significantly improves recall while maintaining the same level of 
precision. WEBRE is efficient. To the best of our knowledge, it handles the largest 
triple set to date (7-fold larger than largest previous effort). Taking 14.7 million triples 
as input, a complete run with one CPU core takes about a day. 

 
 
RELATED WORK 
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3 A cluster of relation phrases can, however, act as a whole as the phrase cluster for 2 different relations in SNE. However, this 
only accounts for 4.8% of the polysemous cases. 



Unsupervised relation extraction (URE) algorithms (Hasegawa et al., 2004; Chen et al., 2005; 
Shinyama and Sekine, 2006) collect pairs of co-occurring entities as relation instances, extract 
features for instances and then apply unsupervised clustering techniques to find the major 
relations of a corpus. These UREs rely on tagging a predefined set of argument types, such as 
Person, Organization, and Location, in advance. Yao et al. 2011 proposed several generative 
models, largely similar to LDA (Blei et al, 2003), for relation extraction. One of their models 
learns fine-grained semantic classes as relation arguments, but they share the similar requirement 
of tagging coarse-grained argument types. Most UREs use a quadratic clustering algorithm such 
as Hierarchical Agglomerate Clustering (Hasegawa et al., 2004, Shinyama and Sekine, 2006), K-
Means (Chen et al., 2005), or both (Rosenfeld and Feldman, 2007); thus they are not scalable to 
very large corpora. 
    As the target domain shifts to the Web, new methods are proposed without requiring 
predefined entity types. Resolver (Yates and Etzioni, 2007) resolves objects and relation 
synonyms. Kok and Domingos (2008) proposed Semantic Network Extractor (SNE) to extract 
concepts and relations. Based on second-order Markov logic, SNE used a bottom-up 
agglomerative clustering algorithm to jointly cluster relation phrases and argument entities. 
However, both Resolver and SNE require each entity and relation phrase to belong to exactly one 
cluster. This limits their ability to handle polysemous relation phrases. Moreover, SNE only uses 
features in the input set of relation instances for clustering, thus it fails to group many relevant 
instances. Resolver has the same sparseness problem but it is not affected as much as SNE 
because of its different goal (synonym resolution). 
    As the preprocessing instance-detection step for the problem studied in this paper, open IE 
algorithms extracts relation instances (in the form of triples) from the open domain (Etzioni et 
al., 2004; Banko et al., 2007; Fader et al., 2011). For efficiency, they only use shallow features. 
Reverb (Fader et al., 2011) is a state-of-the-art open domain extractor that targets verb-centric 
relations, which have been shown in Banko and Etzioni (2008) to cover over 70% of open 
domain relations. Wang et al. (2011) filtered relation instances by using a few heuristics and a 
learning algorithm. Taking the relation instances extracted by open IE algorithms as input, 
algorithms have been proposed to resolve objects and relation synonyms (Resolver),  extract 
semantic networks (SNE), and map extracted relations into an existing ontology (Soderland and 
Mandhani, 2007). 
    Recent work shows that it is possible to construct semantic classes automatically with data-
driven approaches. They generally fall into three categories. The first category is based on the 
distributional hypothesis, which states that similar terms tend to appear with similar contexts 
(Harris 1985), so that it is possible to group similar terms if their contexts are similar. Several 
previous efforts aimed at utilizing the distributional hypothesis for constructing semantic classes 
(Pasca, 2007; Pantel et al., 2009). The second category (Pasca 2004; Sarmento et al., 2007) uses 
patterns to find similar terms. The third category is language independent approaches (Wang and 
Cohen 2007, 2009). For example, Wang and Cohen (2007) use HTML wrappers to find similar 
terms. Pennacchiotti and Pantel (2009) combine several sources and features for extracting entity 
classes. 
    Two tasks are closely related to the task of finding similar phrases for a relation: paraphrase 
discovery and recognizing textual entailment. Data-driven paraphrase discovery methods (Lin 
and Pantel, 2001; Pasca and Dienes, 2005; Wu and Zhou, 2003; Sekine, 2005) find paraphrases 
by extending the idea of distributional similarity to phrases. The Recognizing Textual Entailment 
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algorithms (Berant et al. 2011) can be used for finding related phrases since they find pairs of 
phrases in which one entails the other. 
    To efficiently cluster high-dimensional datasets, canopy clustering (McCallum et al., 2000) 
uses a cheap, approximate distance measure to divide data into smaller subsets, and then clusters 
each subset using an exact distance measure. It has been applied to reference matching. The 
second phase of WEBRE applies a similar high-level idea of partition-then-cluster for speeding 
up relation clustering. We design a graph-based partitioning subroutine that uses various types of 
evidence, such as shared hypernyms. To the best of our knowledge, we have applied the efficient 
clustering algorithm on the largest set of relation instances extracted from the open domain to 
date. 
 
PROBLEM ANALYSIS 
 
The basic input is a collection of relation instances (triples) of the form <ent1, ctx, ent2>. For 
each triple, ctx is a relation phrase expressing the relation between the first argument ent1 and the 
second argument ent2. An example triple is <Obama, win in, NY>. The triples can be generated 
by an open IE extractor such as TextRunner or Reverb. Our goal is to automatically build a list 
of relations, each with the form4 {< ent1, 𝑐𝑡𝑥, ent2 >} or < 𝐶1,𝑃,𝐶2 > (P is the set of relation phrases, 
and 𝐶1  and  𝐶2 are two argument classes). Examples of triples and relations R (as Type B) are 
shown in Figure 1.  
    There are two major challenges for building such a list of relations. The first problem is the 
polysemy of relation phrases, which means that a relation phrase ctx can express different 
relations in different triples. For example, the meaning of be the currency of in the following two 
triples is quite different: <Euro, be the currency of, Germany> and <authorship, be the currency 
of, science>. It is more appropriate to assign these 2 triples to 2 relations “a currency is the 
currency of a country” and “a factor is important in an area” than to merge them into one. 
Formally, a relation phrase ctx is polysemous if there exist 2 different relations < 𝐶1,𝑃,𝐶2 > and 
< 𝐶1

′,𝑃′,𝐶2
′ > where 𝑐𝑡𝑥 ∈ 𝑃 ∩ 𝑃′. In the previous example, be the currency of  is polysemous 

because it appears in 2 different relations. 
    Polysemy of relation phrases is not uncommon. We generated clusters from a large sample of 
triples with the assistance of a soft clustering algorithm, and found that around 22% of relation 
phrases can be put into at least 2 disjoint clusters that represent different relations. More 
importantly, manual inspection reveals that some common phrases are polysemous. For example, 
be part of can be put into a relation “a city is located in a county” when connecting Cities to 
Counties, and another relation “a company is a subsidiary of a parent company” when 
connecting Companies to Companies. Failure to handle polysemous relation phrases 
fundamentally limits the effectiveness of an algorithm. The WEBRE algorithm described later 
explicitly handles polysemy and synonymy of relation phrases in its first and second phase 
respectively.  

The second problem is the “synonymy” of relation instances. We use the term synonymy 
broadly and we say 2 relation instances are synonymous if they express the same semantic 
relation between the same pair of semantic classes. For example, both <Euro, be the currency 
used in, Germany> and <Dinar, be legal tender in, Iraq> express the relation <Currencies, be 
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currency of, Countries>. Solving this problem requires grouping synonymous relation phrases 
and identifying argument semantic classes for the relation. 

Various knowledge sources can be derived from the source corpus for this purpose. In this 
paper we pay special attention to incorporating various semantic resources for relation 
extraction. We will show that these semantic sources can significantly improve the coverage of 
extracted relations and the best performance is achieved when various resources are combined 
together. 
 
MINING RELATIONS FROM THE WEB 
 
In this section, we first describe the knowledge sources that are used in the relation extraction 
algorithm, and then introduce the WEBRE algorithm, followed by a brief analysis on its 
computational complexity.  
 
Knowledge Sources 
 
Entity similarity graph: We build two similarity graphs for entities: a distributional similarity 
(DS) graph and a pattern-similarity (PS) graph. The DS graph is based on the distributional 
hypothesis (Harris, 1985), saying that terms sharing similar contexts tend to be similar. We use a 
text window of size 4 as the context of a term, use Pointwise Mutual Information (PMI) to 
weight context features, and use Jaccard similarity to measure the similarity of term vectors. The 
PS graph is generated by adopting both sentence lexical patterns and HTML tag patterns (Hearst, 
1992; Kozareva et al., 2008; Zhang et al., 2009). Two terms (T) tend to be semantically similar if 
they co-occur in multiple patterns. One example of sentence lexical patterns is (such as | 
including) T{,T}* (and|,|.). HTML tag patterns include tables, dropdown boxes, etc. 

Hypernymy graph: Hypernymy relations are very useful for finding semantically similar 
term pairs. For example, we observed that a small city in UK and another small city in Germany 
share common hypernyms such as city, location, and place. Therefore the similarity between the 
two cities is large according to the hypernymy graph, while their similarity in the DS graph and 
the PS graph may be very small. Following existing work (Hearst, 1992, Pantel & Ravichandran 
2004; Snow et al., 2005; Talukdar et al., 2008), we adopt a list of lexical patterns to extract 
hypernyms. The patterns include NP {,} (such as) {NP,}* {and|or} NP, NP 
(is|are|was|were|being) (a|an|the) NP, etc. In this paper, we use the terms hypernym and label 
interchangeably. 

Relation phrase similarity: To generate the pairwise similarity graph for relation phrases 
with regard to the probability of expressing the same relations, we apply a variant of the DIRT 
algorithm (Lin and Pantel, 2001): 
 
 

Algorithm ParaphraseDiscovery 
Input:  Set of triples {<ent1, ctx, ent2>} 
Output:  Similarity matrix of phrases M 
Steps:  
01. For each <ent1, ctx, ent2> in {<ent1, ctx, ent2>} 
02.     Collect < ent1, ent2> as features for ctx 
03. Vec(ctx) = feature vector of ctx 
04. For each phrase ctx1 in {ctx} 



05.     For each phrase ctx2 in {ctx} 
06.         Sim(ctx1, ctx2) = Jaccord(Vec(ctx1), Vec(ctx2)) 
07.         Add Sim(ctx1, ctx2) into M 
08. Return M 

 

Like DIRT, the paraphrase discovery relies on the distributional hypothesis, but there are a few 
differences: 1) we use stemmed lexical sequences instead of dependency paths as relation phrase 
candidates. There are two reasons. First, although dependency parsing produces less sparse 
phrase candidates, it is not applicable to a very large corpus. Second, the impact of the data 
sparseness problem is reduced in a large corpus. 2) We used ordered pairs of arguments as 
features of phrases while DIRT uses them as independent features. We empirically tested both 
feature schemes and found that using ordered pairs results in likely paraphrases but using 
independent features the result contains general inference rules5. 
 
WEBRE for Relation Extraction 
 
Figure 1. Overview of the WEBRE algorithm (Illustrated with examples sampled from 
experiment results). The tables and rectangles with a database sign show knowledge sources, 
shaded rectangles show the 2 phases, and the dotted shapes show the system output, a set of 
Type A relations and a set of Type B relations. The orange arrows denote resources used in 
phase 1 and the green arrows show the resources used in phase 2. 

 
 

WEBRE consists of two phases. In the first phase, a set of semantic classes are discovered and 
used as argument classes for each relation phrase. This results in a large collection of relations 
whose arguments are pairs of semantic classes and which have exactly one relation phrase. We 
call these relations the Type A relations. An example Type A relation is <{New York, London…}, 
be located in, {USA, England, …}>. During this phase, polysemous relation phrases are 
disambiguated and placed into multiple Type A relations. The second phase is an efficient 
algorithm which groups similar Type A relations together. This step enriches the argument 
semantic classes and groups synonymous relation phrases to form relations with multiple 
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expressions, which we called Type B relations. Both Type A and Type B relations are system 
outputs since both are valuable resources for downstream applications such as Question 
Answering and Web Search. An overview of the algorithm is shown in Figure 1. Here we first 
briefly describe a clustering subroutine that is used in both phases, and then describe the 
algorithm in detail. 

To handle polysemy of objects (e.g., entities or relations) during the clustering procedure, a 
key building block is an effective Multi-Membership Clustering algorithm (MMClustering). For 
simplicity and effectiveness, we use a variant of Hierarchical Agglomerative Clustering (HAC), 
in which we first cluster objects with HAC, and then reassign each object to additional clusters 
when its similarities with these clusters exceed a certain threshold6. The algorithm is as follow: 

 
 

Algorithm MMClustering 
Input:  Vector of objects {I} 
 Objects similarity function SimFunc 
 Similarity threshold α and β 
Output:  Clusters of objects {C} 
Steps:  
01. {C} = set each object in {I} as a unit cluster 
02. {C} = HAC({C}, α) 
03. For each I in {I} 
04.  For each C in {C} 
05.   If SimFunc(I, C) > β 
06.    Insert I into C 
07. Return {C} 

 

An object can be an entity as in phase 1, or a relation for phase 2. Empirically β should be greater 
than α to avoid generating duplicated clusters. 

Discovering Type A Relations The first phase of the relation extraction algorithm generates 
Type A relations, which have exactly one relation phrase and two argument entity semantic 
classes. For each relation phrase, we apply a clustering algorithm on each of its two argument 
sets to generate argument semantic classes. The Phase 1 algorithm processes relation phrases one 
by one. For each relation phrase ctx, step 4 (refer to the “Algorithm Phase 1” figure below) 
clusters the set {ent1} using MMClustering to find left-hand-side argument semantic classes {C1}. 
Then for each cluster C in {C1}, it gathers the right-hand-side arguments which appeared in some 
triples whose left hand-side-side argument are in C, and puts them into {ent2’}. Following this, it 
clusters {ent2’} to find right-hand-side argument semantic classes. This results in pairs of 
semantic classes which are arguments of ctx. Each relation phrase can appear in multiple Type A 
relations. For example, <Cities, be part of, Counties> and <Companies, be part of, Companies> 
are different Type A relations which share the same relation phrase be part of. In the pseudo 
code, SimEntFunc is encoded in the entity similarity graphs.  

 

Algorithm Phase 1: Discovering Type A relations 
Input:  set of triples T={<ent1, ctx, ent2>} 
 entity similarity function SimEntFunc 
 Similarity threshold α 
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Output:  list of Type A relations {<C1, ctx, C2>} 
Steps:  
01. For each relation phrase ctx 
02.     {<ent1, ctx, ent2>} = set of triples sharing ctx 
03.     {ent1} = set of ent1 in {<ent1, ctx, ent2>} 
04.     {C1} = MMClustering({ent1}, SimEntFunc, α) 
05.     For each C1 in { C1} 
06.         {ent2’} = set of 𝑒𝑛𝑡2 𝑠. 𝑡.∃< 𝑒𝑛𝑡1, 𝑐𝑡𝑥, 𝑒𝑛𝑡2 > ∈  𝑇 ⋀ 𝑒𝑛𝑡1 ∈ 𝐶1 
07.         {C2} = MMClustering({ent2’}, SimEntFunc, α) 
08.         For each C2 in {C2} 
09.             Add <C1, ctx, C2> into {<C1, ctx, C2>} 
10. Return {<C1, ctx, C2>} 

 

    Discovering Type B Relations  The goal of phase 2 is to merge similar Type A relations, 
such as <Cities, be located in, Countries> and <Cities, be city of, Countries>, to produce Type 
B relations, which have a set of synonymous relation phrases and more complete argument entity 
classes. The challenge for this phase is to cluster a very large set of Type A relations, on which it 
is infeasible to run a clustering algorithm that does pairwise comparison. Therefore, we designed 
an evidence-based partition-then-cluster algorithm. 
    The basic idea is to heuristically partition the large set of Type A relations into small subsets, 
and run clustering algorithms on each subset. It is based on the observation that most pairs of 
Type A relations are not similar because of the sparseness in the entity class and the relation 
semantic space. If there is little or no evidence showing that two Type A relations are similar, 
they can be put into different partitions. Once partitioned, the clustering algorithm only has to be 
run on each much smaller subset, thus computation complexity is reduced.  

We use 2 types of evidence. They are shared members and shared hypernyms of relation 
arguments. For example, 2 Type A relations r1=<Cities, be city of, Countries> and r2=<Cities, 
be located in, Countries> share a pair of arguments <Tokyo, Japan>, and a pair of hypernyms 
<”city”, “country”>. These pieces of evidence give us hints that they are likely to be similar. As 
shown in the pseudo code, shared arguments and hypernyms are used as independent evidence to 
reduce sparseness. 

 

Algorithm Phase 2: Discovering Type B relations 
Input:  Set of Type A relations {r}={<C1, ctx, C2>} 
 Relation similarity function SimRelationFunc 
 Map from entities to their hypernyms: Mentity2label 
 Similarity threshold α 

Edge weight threshold µ 
Variables G(V, E) = weighted graph in which V={r} 
Output:  Set of Type B relations {<C1, P, C2>} 
Steps:  
01. {<ent, {r’}>} = build  inverted index from argument ent to set of Type A  
 relations {r’} on {<C1, ctx, C2>} 
02 {<l, {r’}>} = build  inverted index from hypernym l of arguments to set  
 of Type A relations {r’} on {<C1, ctx, C2>} with map Mentity2label 
03. For each ent in {<ent, {r’}>} 



04.     For each pair of r1 and r2  s.t. 𝑟1 ∈ �𝑟 ′� ⋀ 𝑟2 ∈ {𝑟′}    
05.        weight_edge(<r1, r2>) += weight (ent) 
06. For each l in {<l, {r’}>} 
07.     For each pair of r1 and r2  s.t. 𝑟1 ∈ �𝑟 ′� ⋀ 𝑟2 ∈ {𝑟′}    
08.        weight_edge(<r1, r2>) += weight (l) 
09. For each edge <r1, r2> in G 
10.     If weight_edge(<r1, r2>) < µ 
11.         Remove edge <r1, r2> from G 
12. {CC}= DFS(G) 
13. For each connected component CC in {CC} 
14.     {<C1, ctx, C2>} = vertices in CC 
15. {<C1’, P’, C2’>} = MMClustering({<C1, ctx, C2>},  SimRelationFunc, α) 
16.     Add {<C1’, P’, C2’>} into {<C1, P, C2>} 
17. Return {<C1, P, C2>} 

 

    Steps 1 and 2 build an inverted index from evidence to sets of Type A relations. On the graph 
G whose vertices are Type A relations, steps 3 to 8 set the value of edge weights based on the 
strength of evidence that shows the end-points are related. The weight of evidence E is calculated 
as follows: 

𝑤𝑒𝑖𝑔ℎ𝑡(𝐸) =
# 𝑠ℎ𝑎𝑟𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝐸 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 

max(# 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐸 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛)
 

The idea behind this weighting scheme is similar to that of TF-IDF in that the weight of 
evidence is higher if it appears more frequently and is less ambiguous (appeared in fewer 
semantic classes during clustering of phase 1). The weighting scheme is applied to both shared 
arguments and labels. 

After collecting evidence, we prune (steps 9 to 11) the edges with a weight less than a 
threshold µ to remove noise. Then a Depth-First Search (DFS) is called on G to find all 
Connected Components CC of the graph. These CCs are the partitions of likely-similar Type A 
relations. We run MMClustering on each CC in {CC} and generate Type B relations (step 13 to 
step 16).  The similarity of two relations (SimRelationFunc) is defined as follows: 

𝑠𝑖𝑚�< 𝐶1,𝑃,𝐶2 >, < 𝐶1′,𝑃′,𝐶2′ >� = �
0,     𝑖𝑓 𝑠𝑖𝑚�𝑃,𝑃′� <  𝜎

min �𝑠𝑖𝑚�𝐶1,𝐶1′�, 𝑠𝑖𝑚�𝐶2,𝐶2′�� ,   𝑒𝑙𝑠𝑒 
  

in which 𝒔𝒊𝒎(𝑷,𝑷′) is the average similarity of the 2 sets of relation phrases in the 2 relations, 
and 𝒔𝒊𝒎(𝑪𝟏,𝑪𝟏′ ) is the average similarity of the 2 sets of argument entities in the 2 relations. 
These similarities are looked up from the similarity graphs (phrase and entities) constructed with 
techniques described in Section 4.1. 
 

 

Computational Complexity 
 
WEBRE is very efficient since both phases decompose the large clustering task into much 
smaller clustering tasks over partitions. Given n objects for clustering, a hierarchical 
agglomerative clustering algorithm requires 𝑂(𝑛2)  pairwise comparisons. Assuming the 
clustering task is split into subtasks of size 𝑛1, 𝑛2, …, 𝑛𝑘, thus the computational complexity is 
reduced to 𝑂(∑ 𝑛𝑖2𝑘

1 ) . Ideally each subtask has an equal size of 𝑛/𝑘 , so the computational 



complexity is reduced to O(𝑛2/𝑘), a factor of 𝑘 speed up. In practice, the sizes of partitions are 
not equal. Taking the partition sizes observed in the experiment with 0.2 million Type A 
relations as input, the phase 2 algorithm achieves around a 100-fold reduction in pairwise 
comparisons compared to the agglomerative clustering algorithm. The combination of phase 1 
and phase 2 achieves more than a 1000-fold reduction in pairwise comparison, compared to 
running an agglomerative clustering algorithm directly on 14.7 million triples. This reduction of 
computational complexity makes the unsupervised extraction of relations on a large dataset a 
reality. In the experiments with 14.7 million triples as input, phase 1 finished in 22 hours, and the 
phase 2 algorithm finished in 4 hours with one CPU core. 

Furthermore, both phases can be run in parallel in a distributed computing environment 
because data is partitioned. Therefore it is scalable and efficient for clustering a very large 
number of relation instances from a large-scale corpus like the Web.  
 
EXPERIMENT 
 
Data preparation We tested WEBRE on resources extracted from the English subset of the 
Clueweb09 dataset, which contains 503 million webpages. For building knowledge resources, all 
webpages are cleaned, POS tagged and chunked with in-house tools. We implemented the 
algorithms described in section 4.1 to generate the knowledge sources, including a hypernym 
graph, two entity similarity graphs and a relation phrase similarity graph. 

We used Reverb Clueweb09 Extractions 1.1 (downloaded from reverb.cs.washington.edu) as 
the triple store (relation instances). It is the complete extraction of Reverb over Clueweb09 after 
filtering low confidence and low frequency triples. It contains 14.7 million distinct triples with 
3.3 million entities and 1.3 million relation phrases. We choose it because 1) it is extracted by a 
state-of-the-art open IE extractor from the open-domain, and 2) to the best of our knowledge, it 
contains the largest number of distinct triples extracted from the open-domain and which is 
publicly available. Reverb triples are in the form of triples <argument1, relation phrase, 
argument2> in which the 2 arguments are noun phrases and relation phrases are the lexical 
sequence in between. An example triple is <Boston, is located north of, New York>. To reduce 
sparseness of the relation phrases, we apply a dictionary-based stemmer to reduce the inflected 
form of each word to its base form. We also remove stop words (semantically empty words) 
from the relation phrases. 
 
Evaluation setup The evaluations are organized as follows: we evaluate Type A relation 
extraction and Type B relation extraction separately, and then we compare WEBRE to its closest 
prior work SNE.  Since both phases are essentially clustering algorithms, we compare the output 
clusters with human labeled gold standards and report performance measures, following most 
previous work such as Kok and Domingos (2008) and Hasegawa et al. (2004). Three gold 
standards are created for evaluating Type A relations, Type B relations and the comparison to 
SNE, respectively. In the experiments, we set α=0.6, µ=0.1 and 𝜎=0.02 based on trial runs on a 
small development set of 10k relation instances. We filtered out the Type A relations and Type B 
relations which only contain 1 or 2 triples since most of these relations are not different from a 
single relation instance and are not very interesting. Table 1 shows the overall statistics of the 
experiment. 201,246 Type A relations and 84,126 Type B relations are extracted. 
 

Table 1. Overall statistics of the experiment. The Type A relations are generated with the 
Label+SIM method and must contain at least 2 triples. 



 
 

Type Distinct # of instances 
Triple 14,728,268 
Entity 3,326,830 
Relation phrase 1,299,841 
Type A relation 201,246 
Type B relation 84,126 

 
Evaluating Type A relations To understand the effectiveness of knowledge sources, we run 
Phase 1 multiple times taking entity similarity graphs (matrices) constructed with resources 
listed below: 
• TS: Distributional similarity based on the triple store. For each triple <ent1, ctx, ent2>, features 

of ent1 are {ctx} and {ctx ent2}; features of ent2 are {ctx} and {ent1 ctx}. Features are weighted 
with PMI. Cosine is used as similarity measure.  

• LABEL: The similarity between two entities is computed according to the percentage of top 
hypernyms they share. 

• SIM: The similarity between two entities is the linear combination of their similarity scores in 
the distributional similarity graph and in the pattern similarity graph. 

• SIM+LABEL SIM and LABEL are combined. Observing that SIM generates high quality but 
overly fine-grained semantic classes, we modify the entity clustering procedure to cluster 
argument entities based on SIM first, and then further clustering the results based on LABEL. 
The outputs of these runs are pooled and mixed for labeling. We randomly sampled 60 relation 

phrases. For each phrase, we select the 5 most frequent Type A relations from each run (4×5=207 
Type A relations in all). For each relation phrase, we ask a human labeler to label the mixed pool 
of Type A relations that share the phrase: 1) The labelers8 are asked to first determine the major 
semantic relation of each Type A relation, and then label the triples as good, fair or bad based on 
whether they express the major relation. 2) The labeler also reads all Type A relations and 
manually merges the ones that express the same relation. These 2 steps are repeated for each 
phrase. After labeling, we create a gold standard GS1, which contains roughly 10,000 triples for 
60 relation phrases. On average, close to 200 triples are manually labeled and clustered for each 
phrase. This creates a large data set for evaluation.  

We report micro-average of precision, recall and F1 on the 60 relation phrases for each 
method. Precision (P) and Recall (R) of a given relation phrase is defined as follows. Here 𝑅𝐴 
and 𝑅𝐴′ represents a Type A relation in the algorithm output and GS1, respectively. We use t for 
triples and s(t) to represent the score of the labeled triple t.  

𝑃 =
∑ ∑ 𝑠(𝑡) 𝑡∈𝑅𝐴  𝑅𝐴

∑ |𝑅𝐴|𝑅𝐴
, 𝑅 =

∑ ∑ 𝑠(𝑡) 𝑡∈𝑅𝐴  𝑅𝐴
∑ ∑ 𝑠(𝑡 ′) 𝑡′∈𝑅𝐴

′𝑅𝐴
′

 

s(t) is set to 1.0, 0.5 or 0 for t labeled as good, fair and bad, respectively. Examples of labels 
assigned to triples are listed in following table: 
 

Table 2. Scores for human judgments on triples. The labels are assigned according to whether 
they belongs to the main relation <Cities, be capital of, Countries>. The second entry is rated 
'Fair' because it's not clear that Abkhazia should be classified as a country. 
                                                           
7 Here 4 means the 4 methods (the bullet items above) of computing similarity. 
8 4 human labelers perform the task. A portion of the judgments were independently dual annotated; inter-annotator agreement is 
79%. Moreover, each judgment is cross-checked by at least one more annotator, further improving quality. 



 
 

Label Score  Example triple (<Cities, be capital of, Countries>) 
Good 1.0 <Baghdad, Iraq> 
Fair 0.5 <Sukhumi, Abkhazia> 
Bad 0.0 <Bangalore, Karnataka State> 

 

The results are in table 3. Overall, LABEL performs 53% better than TS in F-measure, and 
SIM+LABEL performs the best, 8% better than LABEL. Applying a simple sign test shows both 
differences are clearly significant (p<0.001). Surprisingly, SIM, which uses the similarity matrix 
extracted from full text, has a F1 of 0.277, which is lower than TS. We also tried combining TS 
and LABEL but did not find encouraging performance compared to SIM+LABEL. 
    Among the 4 methods, SIM has the highest precision (0.964) when relation phrases for which 
it fails to generate any Type A relations are excluded, but its recall is low. Manual checking 
shows that SIM tends to generate overly fine-grained argument classes. If fine-grained argument 
classes or extremely high-precision Type A relations are preferred, SIM is a good choice. 
LABEL performs significantly better than TS, which shows that hypernymy information is very 
useful for finding argument semantic classes. However, it has coverage problems in that the 
hypernym finding algorithm failed to find any hypernym from the corpus for some entities. 
Following up, we found that SIM+LABEL has similar precision and the highest recall. This 
shows that the combination of semantic spaces is very helpful. The significant recall 
improvement from TS to SIM+LABEL shows that the corpus-based knowledge resources 
significantly reduce the data sparseness, compared to using features extracted from the triple 
store only. The result of the phase 1 algorithm with SIM+LABEL is used as input for phase 2. 
 

Table 3. Phase 1 performance (averaged on multiple runs) of the 4 methods. The highest 
performance numbers are in bold. (The number in parenthesis is the micro-average when empty-
result relation phrases are not considered for the method). 
 
 

Algorithm Precision Recall F1 
TS 0.842 (0.886) 0.266 0.388 

LABEL 0.855 (0.870) 0.481 0.596 
SIM 0.755 (0.964) 0.178 0.277 

SIM+LABEL 0.843 (0.872) 0.540 0.643 
 

Evaluating Type B relations The goal is 2-fold: 1) to evaluate the phase 2 algorithm. This 
involves comparing system output to a gold standard constructed by hand, and reporting 
performance; 2) to evaluate the quality of Type B relations. For this, we will also report triple-
level precision. 
    We construct a gold standard GS29 for evaluating Type B relations as follows: We randomly 
sampled 178 Type B relations, which contain 1547 Type A relations and more than 100,000 
triples. Since the number of triples is very large, it is infeasible for labelers to manually cluster 
triples to construct a gold standard. To report precision, we asked the labelers to label each Type 
A relation (as a whole rather than label each of its triples) contained in this Type B relation as 
good, fair or bad based on whether it expresses the same relation. For recall evaluation, we need 
to know how many Type A relations are missing from each Type B relation. We provide the full 
                                                           
9 3 human labelers performed the task. A portion of the judgments were independently dual annotated; inter-annotator agreement 
is 73%. Similar to labeling Type A relations, each judgment is cross-checked by at least one more annotator, further improving 
quality. 



data set of Type A relations along with three additional resources: 1) a tool which, given a Type 
A relation, returns a ranked list of similar Type A relations based on the pairwise relation 
similarity metric in section 4, 2) DIRT paraphrase collection, 3) WordNet (Fellbaum, 1998) 
synsets. The labelers are asked to find similar phrases by checking phrases which contain 
synonyms of the tokens in the query phrase. Given a Type B relation, ideally we expect the 
labelers to find all missing Type A relations using these resources. We report precision (P) and 
recall (R) as follows. Here 𝑅𝐵  and 𝑅𝐵′  represent Type B relations in the algorithm output and 
GS2, respectively. 𝑅𝐴 and 𝑅𝐴′  represent Type A relations. 𝑠(𝑅𝐴) denotes the score of 𝑅𝐴. 
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𝑠(𝑅𝐴) is set to 1.0, 0.5 and 0 for good, fair or bad respectively.  Examples of labels assigned to 
type A relations are listed in following table: 

 
Table 4. Scores for human judgments on Type A relations. The labels are assigned to each Type 
A relation according to whether they express the main relation in the Type B relation. The main 
relations in the third columns are the human perceived major relations.  

 
 

Label Score  Example Type A relation Main relation in Type B 
Good 1.0 <{Ben, Aaron,…}, be younger 

brother of, {Harish, Curt, …}> 
{Ben, Chris, …}“is brother of” 
{Tim, John Wesley, …} 

Fair 0.5 <{Bill Richardson, Edwards, Gore}, 
should endorse, {Hilary Clinton, 
Obama, Romney}> 

{Gore, Edwards, …}“supports” 
{Clinton, Obama, …} 

Bad 0.0 <{Josh, James, …}, never like, 
{Jamie, Simon, …}> 

{Ben, Chris, …} “is brother of” 
{Tim, John Wesley, …} 

 
 

We also ask the labeler to label at most 50 randomly sampled triples from each Type B 
relation, and calculate triple-level precision as the ratio of the sum of scores of triples over the 
number of sampled triples. We use 𝑃𝑖𝑛𝑠 to represent the precision calculated based on labeled 
triples. Moreover, as we are interested in how many phrases are found by our algorithm, we also 
include 𝑅𝑝ℎ𝑟𝑎𝑠𝑒, which is the recall of synonymous phrases. Results are shown in Table 5.  

 
 

Table 5. Performance for Type B relation extraction. The first column shows the range of the 
maximum sizes of Type A relations in the Type B relation. The last column shows the number of 
Type B relations that are in this range. The number in parenthesis in the third column is the 
recall of phrases.  

 

Interval P R (𝑅𝑝ℎ𝑟𝑎𝑠𝑒) F1 𝑃𝑖𝑛𝑠 count 
[3, 5) 0.913 0.426 (0.026) 0.581 0.872 52149 
[5, 10) 0.834 0.514 (0.074) 0.636 0.863 21981 
[10, 20) 0.854 0.569 (0.066) 0.683 0.883 6277 
[20, 50) 0.899 0.675 (0.406) 0.771 0.894 2630 
[50, +∞) 0.922 0.825 (0.594) 0.871 0.929 1089 
Overall 0.897 0.684 (0.324) 0.776 0.898 84126 

 
 



    The result shows that WEBRE can extract Type B relations at high precision (both P and 
𝑃𝑖𝑛𝑠). The overall recall is 0.684. Table 5 also shows a trend that if the maximum number of 
Type A relation in the target Type B relation is larger, the recall is better. This shows that the 
recall of Type B relations depends on the amount of data available for that relation. Some 
examples of Type B relations extracted are shown in Table 9.  
 
Phrase synonymy and polysemy WEBRE disambiguates polysemous relation phrases and 
groups synonymous ones with the phase 1 and phase 2 algorithms respectively. In table 6, we 
show the type A relations generated for two relation phrases withdraw from and be a unit of. We 
can see that phase 1 effectively placed the phrases into several type A relations with different 
meanings. For instance, “withdraw from” can represent the relationship between two countries 
(meaning one country withdraws its forces from the other), a country and an organization 
(showing that the country is no longer a member of the organization), a player and an event, a 
team and a sport, etc. Multiple meanings of a relation phrase are successfully identified in the 
first phase of our algorithm, and multiple type A relations are generated accordingly.  
 

Table 6. Sample relation phrases and their corresponding type A relations. The second column 
shows the argument class names (assigned “label” pairs) and the third column shows sample 
argument pairs. 
 

Relation phrases Type A relations Argument pairs samples 

withdraw from 

<country, country> <America, Vietnam>; <Israel, Lebanon> 

<country, organization> <Albania, the Warsaw Pact>; <Zimbabwe, the 
Commonwealth> 

<force, country> <American forces, Vietnam>; <Roman Legions, Britain> 
<player, event> <Brandon Bass, the NBA draft>; <Agassi, Wimbledon> 
<car, sport>* <Chrysler, NASCAR >; <Porsche, Grand Prix racing> 

be a unit of <company, company> <ABC, the Walt Disney co.>; <American Airlines, AMR 
Corp.> 

<unit, concept> <Celsius, temperature>; <pounds, weight> 
*A wrong pair of labels was assigned by WEBRE based on the hypernym hierarchy, The correct one should be 
“<team, sport>” 

 

    We also show the top neighbors (the list of most similar phrase or type A relations, sorted in 
descending order by their similarities to the query phrase) of a common phrase be part of and 
two Type A relations <companies, be part of, companies> and <cities, be part of, counties> in 
Table 7. The top neighbors of be part of show a mix of two meanings of be part of: “a company 
is a part of its parent company”, or “a city is a part of a county”, whereas the top neighbors of 
the two type A relations (be part of applied to pairs of arguments <companies, companies> and 
<cities, counties> respectively) diverge and show a clear split in the meaning of the relations 
they express. This further shows the importance of applying phase 1 to disambiguate relation 
phrases.  
 

Table 7. Top neighbors of a relation phrase and the 2 type A relations it appears in (I: top-10 
similar relation phrases of “be part of”; II: top-10 similar type A relations of <companies, be 
part of, companies>; III: top-10 similar type A relations of <cities, be part of, counties>). To 
emphasize our focus on the relation phrases, in this table we show the relation phrase first, and 
then 2 argument classes (assigned “labels”). This is different from previous notation <Argument 
class1, relation phrases, Argument class2>. 



 

be part of <be part of, company, company> <be part of, city, county> 
be a part of 
be a city in 
be a town in 
be a city located in 
be a village in 
be a division of 
be a town located in 
be located in 
be a fact of 
be a subsidiary of 

<be owned by, company, company> 
<be a division of, company, company> 
<be a unit of, company, company> 
<be a subsidiary of, company, company> 
<will be acquired by, company, company> 
<will be purchased by, company, company> 
<will be bought by, company, company> 
<be now part of, company, company> 
<be a part of, company, company> 
<be recently sold to, company, company> 

<be located in, city, county> 
<be the county seat of, city, county> 
<be a township in, city, county> 
<be in, city, county> 
<be a village in, city, county> 
<be located in, city, city> 
<be a city located in, city, county> 
<be a city in, city, county> 
<be a town located in, town, county> 
<be a town in, town, county> 

(I)     (II)          (III) 
 

    Using the large set of Type A and Type B relations extracted by WEBRE, we generate the 
Cumulative Distribution of Frequency (CDF) of the number of Type A relations the relation 
phrases belong to, and the CDF of the number of synonymous relation phrases each Type B 
relation has, and plot them in figure 2 to shows the distribution of polysemy and synonymy of 
relation phrases empirically. 

Figure 2 (I) shows the CDF of the number of Type A relations to which a relation phrase 
belongs.  Around 40% of phrases can be put into 2 Type A relations, and around 8% of them can 
be put into at least 5 Type A relations. It shows that WEBRE can disambiguate a large number of 
relation phrases. In figure 2 (II), we plot the CDF of the number of synonymous phrases in Type 
B relations. Close to 30% of Type B relations have at least 2 relation phrases (Note: x-axis of 
figure II starts from 1 not 0). Some Type B relations have more than 200 relation phrases. 
Coupled with the phrase level recall shown in Table 5, this demonstrates WEBRE’s ability to 
find synonymous relation phrases.  

 
Figure 2. Figure (I) shows the Cumulative Distribution of Frequency (CDF) of the number of 
distinct Type A relations in which a relation phrase appears, and figure (II) shows the CDF of 
the number of synonymous relation phrases that are in the same Type B relation. Note: x-axis of 
(II) is in log-scale for presentation. 

 
 

  
(I)                                                                        (II) 

 



Comparison with SNE We compare Type B relations extracted by WEBRE to the relations 
extracted by its closest prior work, SNE10. We found SNE is not able to handle the 14.7 million 
triples in a foreseeable amount of time, so we randomly sampled 1 million (1M) triples11 and test 
both algorithms on this set. We also filtered out resulting clusters which have only 1 or 2 triples 
from both system outputs. For comparison purposes, we constructed a gold standard GS3 as 
follows: randomly select 30 clusters from both system outputs, and then find similar clusters 
from the other system output, followed by manually refining the clusters by merging similar ones 
and splitting non-coherent clusters. GS3 contains 742 triples and 135 clusters. We report triple-
level pairwise precision, recall and F1 for both algorithms against GS3, and report results in 
Table 8. We fine-tuned SNE (using grid search, internal cross-validation, and coarse-to-fine 
parameter tuning), and report its best performance. 
 
Table 8. Pairwise precision/recall/F1 of WEBRE and SNE. 

 

Algorithm Precision Recall F1 
WEBRE 0.848 0.734 0.787 

SNE 0.850 0.080 0.146 
 

Table 8 shows that WEBRE outperforms SNE significantly in pairwise recall while having 
similar precision. There are two reasons. First, WEBRE makes use of several corpus-level 
semantic sources extracted from the corpus for clustering entities and phrases while SNE uses 
only features in the triple store. These semantic resources significantly reduced data sparseness. 
Examination of the output shows that SNE is unable to group many triples from the same 
generally-recognized fine-grained relations. For example, SNE placed relation instances 
<Barbara, grow up in, Santa Fe> and <John, be raised mostly in, Santa Barbara> into 2 
different clusters because the arguments and phrases do not share features nor could be grouped 
by SNE’s mutual clustering. In contrast, WEBRE groups them together. Second, SNE assumes a 
relation phrase to be in exactly one cluster. For example, SNE placed be part of in the phrase 
cluster be city of and failed to place it in another cluster be subsidiary of. This limits SNE’s 
ability to place relation instances with polysemous phrases into correct relation clusters. 

It should be emphasized that we use pairwise precision and recall in table 8 to be consistent 
with the original SNE paper. Pairwise metrics are much more sensitive than instance-level 
metrics, and penalize recall exponentially in the worst case12 if an algorithm incorrectly splits a 
coherent cluster; therefore the absolute pairwise recall difference should not be interpreted as the 
same as the instance-level recall reported in previous experiments. On 1 million triples, WEBRE 
generates 12179 triple clusters with an average size13 of 13 while SNE generate 53270 clusters 
with an average size of 5.1. In consequence, pairwise recall drops significantly. Nonetheless, at 
above 80% pairwise precision, it demonstrates that WEBRE can group more related triples by 
adding rich semantics harvested from the Web and employing a more general treatment of 
polysemous relation phrases.  On 1M triples, WEBRE finished in 40 minutes, while the run time 
of SNE varies from 3 hours to a few days. 
                                                           
10 Obtained from alchemy.cs.washington.edu/papers/kok08 
11 We found that SNE’s runtime on 1M triples varies from several hours to over a week, depending on the parameters. The best 
performance is achieved with runtime of approximately 3 days. We also tried SNE with 2M triples, on which many runs take 
several days and show no sign of convergence. For fairness, the comparison was done on 1M triples. 
12 Pairwise precision and recall are calculated on all pairs that are in the same cluster, thus are very sensitive to cluster sizes. For 
example, if an algorithm incorrectly split a cluster of size N to a smaller main cluster of size N/2 and some constant-size clusters, 
pairwise recall could drop to as much as ¼ of its original value. 
13 The clusters which have only 1 or 2 triples are removed and not counted here for both algorithms. 

http://alchemy.cs.washington.edu/papers/kok08/


 
Discussion 
 
Domain of the relations The harvested relations are from a wide range of domains. To show the 
breadth of coverage, we sample a few Type B relations and map them into the relation types 
defined in a benchmark evaluation, and those defined for two domains, business news and 
clinical text:   

• Automatic Content Extraction (ACE) 2005 14 : ACE is an evaluation on information 
extraction organized by the U.S. National Institute of Standards and Technology (NIST). 
It is the standard benchmark for most research in relation extraction. ACE 2005 defines 5 
major types and 18 subtypes. They come from a wide range of domains.  

• OpenCalais15 is a service by Thomson Reuters that automatically extracts entities, facts 
and events from the news domain. A fraction of its facts are similar to relations. 

• The 2010 i2b2/VA16 workshop on Natural Language Processing Challenges for Clinical 
Records:  it defines a few relation types in the clinical record domain. 

    Table 9 presents the Type B relations that can be mapped into relation types defined in ACE 
2005, Calais (OpenCalais) or i2b2. Except for “artifact” subtypes, we found WEBRE extraction 
covered all relation subtypes defined in ACE 2005. This demonstrates that WEBRE’s extraction 
contains lots of relations of interest in a wide range of topics. Furthermore, we show the 
extracted results contain relations which can be mapped to the representative relations (“facts”) 
from Calais and major types in the 2010 i2b2 challenge. In fact, WEBRE extraction covers more 
than half of the “facts” (it is sometimes hard to differentiate events from “facts” in Calais) of 
Calais and all the three major types in i2b2. This further shows WEBRE extraction’s wide 
coverage. We also included two relations that could not be mapped into any types that are 
defined in the known set.  
    As a fully unsupervised algorithm, WEBRE extracts a wide range of relations that can be 
mapped into existing human-defined relation types from a diverse set of domains. This shows it 
is useful for real-world applications. Furthermore, we show that WEBRE can find relations that 
have not been defined in previous evaluations (systems). This shows it has the flexibility to 
discover new open-domain relations. 
 

Table 9. A list of relations that maps into the ACE 2005 subtypes, representative Calais relation 
types from news, and i2b2 types from the clinical data domain. The types with “(Calais)” are 
representative “fact” types from Calais. The types with “(i2b2)” are the major relation types 
from the 2010 i2b2/VA challenge in clinical text.  All other types are relation subtypes defined in 
ACE 2005. “-” shows no relations matched. We also show 2 interesting relations that cannot 
map into the types previously defined. At most 2 relation phrases are shown for each relation. 
 
 

Types 
Type B relations 

Argument 1 Relation phrase Argument 3 

user-owner-
inventor-

manufacturer 

Charlie, Luke, Barbara drive a Porsche, a Corvette, an Audi 

AutoCAD, Java, PlayStation be a trademark of, be a 
product of 

Autodesk, Sun Microsystems, Sony 
Corporation 

                                                           
14 http://www.itl.nist.gov/iad/mig/tests/ace/ace05/ 
15 http://www.opencalais.com/ 
16 https://www.i2b2.org/NLP/Relations/ 

http://en.wikipedia.org/wiki/Thomson_Reuters


Tim Berners-Lee, Philot. 
Farnsworth, Thomas Alva 

Edison 

be the inventor of, have 
invented 

the World Wide Web, Television, 
electricity 

Rockwell Automation, 
Lexar, HoMedics 

be a manufacturer of, be a 
big name in 

programmable controllers, flash 
memory, massage equipment 

citizen-resident-
religion-
ethnicity 

Larry, Grace, Anna reside in, be a legal 
resident of Tulsa, Boulder, Denver 

David, Henry, Charlotte convert to, be a convert to Islam, Buddism, Mormonism 

org-location AuctionDrop, BMI, Dr. 
Pepper 

be headquartered in, be a 
company in Menlo Park, New York, Plano 

employment Michael Smith, Michael 
Goldfarb, Matthew Brown 

work at, be an employee 
of 

Radioshack, Starbucks, 
Renaissance magazine 

 

founder Brzezinski, Larson, Bokaer be founder of, be founding 
director of 

The Trilateral Commission, LINC, 
Chez Bushwick 

ownership United Online, Saks Inc., 
Lockheed Martin 

be the parent company to, 
be the owner of 

NetZero, Saks Fifth Avenue, Savi 
Technology 

 

student-alum Barnard, Axelrod, Doug graduate from, be a 
student at 

Simon Fraser University, George 
Washington University, The 

University of Maryland 
sports-

affiliation Boyd, Mccovey, Tom Brady sign with, play for the Boston Red Sox, the San 
Francisco Giants, the Patriots 

investor-
shareholder 

bond funds, international 
funds, mutual fund 

invest only in, invest 
primarily in 

bonds , foreign stocks, 
commodities 

membership Elsie, Henry, Boyd remain a member of, be a 
member of 

Chi Omega Sorority, The Labour 
Party, Greenpeace 

artifact - - - 

geographical 
Lacey Township, Vernon 
Township, Woodbridge 

Township 

be a township in, be 
located in 

Ocean County, Sussex County, 
Middlesex County 

subsidiary STM, Stock Building Supply, 
FedEx Ground 

be a subsidiary of, be a 
part of 

SunTrust bank, Wolseley, Federal 
Express 

business Bohm, Robert, Mike be a colleague of Albert Einstein, Werner 
Heisenberg, Jack Canfield 

family Jean Grey, Jillian, Anne be a daughter of, be the 
younger daughter of John Grey, Jonathan Lee, James 

lasting-personal Paul, Curtis, Kerr 
have a close friendship 

with, developed a 
friendship with 

Michael Jackson, Roosevelt, Bas 
Rutten 

located David, Henry, Antoine live in, have resided in New York, Buffalo, San Francisco 
near Seattle, Samaria, Yorkton be near, be north of Portland, Jerusalem, Minot 

(Calais) 
acquisition 

Philip Morris, Ingersoll 
Rand, The Coca-Cola 

Company 
acquire, be buying Kraft, Trane, Columbia Pictures 

(Calais) alliance Microsoft, Mitsubishi 
Motors, Enventis be a strategic partner of Hewlett-Packard, 

DaimlerChrysler, Cisco Systems 
(Calais) 

bankruptcy 
Lehman Brothers, Penn 
Central, Syntax-Brillian 

go bankrupt in, declare 
bankruptcy in 

September 2008, June 1970, July 
2008 

(i2b2) medical Albuterol, Imipramine, be used for treating, be a Emphysema, depression, 



problems and 
treatments 

Darifenacin medication used to treat Overactive bladder 

(i2b2) test 
relations with 

medical 
problems 

Biopsy, blood tests, amnio come back positive for,  
confirm the presence of 

Breast cancer, Anthrax, Down 
syndrome 

(i2b2) medical 
problem 

relations with 
other medical 

problems 

high blood pressure, 
Menorrhagia, Chronic 

Infections 

can lead to, may raise the 
risk of 

congestive heart failure, Iron 
deficiency anemia, weight loss 

 C# 2.0, PHP5, Java, C++ allow the use of, also use destructors, interfaces, template 
 Clinton, Obama, McCain, … win in, take CA, DC, FL, NH, PA, VA, GA, IL 

 
A hierarchy of relations We evaluate relations (Type B) as a flat set of relations following 
common practice. However, in practice we observe that some Type A relations gradually merged 
together when we lowered the threshold in the phase 2 clustering algorithm. In other words, 
different thresholds can lead to relations at different target granularities. This indicates that 
relations could form a hierarchy and provides us the ability to query them at different granularity. 
The following figure illustrates this with sampled results. Building the hierarchy remains an open 
research topic which we will study in the near future. 
 

Figure 3. A hierarchy built from a small sample of type A relations using hierarchical clustering. 
The top shows the different threshold we used to cluster type A relations. The merging of lines 
represents the merging of type A relations into the one cluster. To emphasize the meaning of 
relation phrases applied to a pair of argument classes, in this table we show the relation phrase 
first, and then 2 argument classes (assigned “labels”). This is different from previous notation 
<Argument class1, relation phrases, Argument class2>. 
 



 
 
 

 
CONCLUSION 
 
We have proposed an unsupervised algorithm that can extract relations without predefined types 
of relations and entities. Compared to previous work, the algorithm handles polysemy of relation 
instances and achieves a significant improvement in recall while maintaining the same level of 
precision. We applied the algorithm on a very large web-based dataset and did a large-scale 
evaluation to show its effectiveness. We analyzed the harvested set of relations in detail and 
provided some insights into future research on open-domain relation extraction. 
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<be located in, institution, city> 
<be located in, company, city> 
<be a city in: city, country> 
<be the seat of: city, institution> 
<be a city located in, city, state> 
<be the seat for, city, county> 
<be the seat of, city, county> 
<be the county seat of, city, county> 
<be a city located in, city, county> 
<be a city in, city, county> 
<be located in, city, county> 
<be a town in, town, county> 
<be part of, city, county> 
<be part of, company, company> 
<be a division of, company, company> 
<be a unit of, company, company> 
<be a subsidiary of, company, company> 
<be a subsidiary of, site, company> 
<become part of, company, company> 
<be a division of, division, organization> 
<be now owned by, company, company> 
<be purchased by, company, company> 
<be sold to, company, company> 
<be sold to, system, company> 
<be now owned by, product, company> 
<be sold to, player, team> 
<be a unit of, unit, concept> 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Threshold: 1 
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