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Abstract
Extracting events in the form of who is in-
volved in what at when and where from text,
is one of the core information extraction tasks
that has many applications such as web search
and question answering. We present a sys-
tem for rapidly customizing event extraction
capability to find new event types (what hap-
pened) and their arguments (who, when, and
where). To enable extracting events of new
types, we develop a novel approach to allow
a user to find, expand and filter event triggers
by exploring an unannotated development cor-
pus. The system will then generate mention-
level event annotation automatically and train
a neural network model for finding the corre-
sponding events. To enable extracting argu-
ments for new event types, the system makes
novel use of the ACE annotation dataset to
train a generic argument attachment model for
extracting Actor, Place, and Time. We demon-
strate that with less than 10 minutes of hu-
man effort per event type, the system achieves
good performance for 67 novel event types.
Experiments also show that the generic argu-
ment attachment model performs well on the
novel event types. Our system (code, UI, doc-
umentation, demonstration video) is released
as open source.1

1 Introduction
Event extraction is the task of identifying events
of interest with associated participating arguments
in text. For instance, given the following sentence:

S1: 21 people were wounded in Tuesday’s
southern Philippines airport blast.

Event extraction aims to recognize the two
events (Injury and Attack), triggered by the words
“wounded” and “blast” respectively. We also rec-
ognize that “21 people” and “airport” take on the
event argument roles Actor(s) involved and Place
respectively.

1github.com/BBN-E/Rapid-customization-events-acl19

For event trigger and argument extraction, state-
of-the-art approaches employ supervised machine
learning methods. These methods assume a pre-
defined event ontology and learn from a corpus
of manually labeled examples that are specific
to that ontology. For instance, the popular Au-
tomatic Content Extraction (ACE) (Doddington
et al., 2004) corpus contains 599 documents man-
ually annotated with examples for 33 event types,
such as Attack and Justice events.

However, producing such type-specific exam-
ples is labor intensive. To extract triggers and ar-
guments of a new event type, one needs to anno-
tate a large amount of training examples specific to
that new event type. For instance, ACE provides
event-type specific argument annotations, such as
Attacker for Attack events. This prevents existing
event argument examples from being useful to-
wards extracting participants of new event types,
as initially defined.

In this paper, we present a system that facilitates
rapid extension of extraction capabilities to a large
number of novel event types. We summarize the
contributions of this paper as follows:

• We present an approach to rapidly gather
event trigger examples for new event types,
with minimal human effort.
• We develop a User Interface (UI) to further

expedite and improve the time efficiency of
our approach.
• For event arguments, we show how to lever-

age annotations of existing event types and
argument roles, to train a classifier that ex-
tracts event arguments such as Actor (who
is involved), Place (where it happened) and
Time (when it happened) for the new event
types.
• We demonstrate the practical utility of our

approach by applying it on a set of 67 novel
event types.
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Figure 1: A user interface that allows a user to provide, expand, and filter event triggers for new types. A demon-
stration video is available on github.com/BBN-E/Rapid-customization-events-acl19.

We first describe the task of event extraction in
the next section. In Section 3, we describe our ex-
traction model, how we leverage our UI to rapidly
gather event trigger examples for new event types,
and how to extract event arguments for new event
types. We present experiment results in Section 4.
We discuss related work in Section 5 before con-
cluding in Section 6.

2 Problem Definition

We focus on the problem of rapid customization
of event extractors for new event types where we
don’t have a large amount of hand-labeled data
available. Given an English sentence, we perform
event extraction using a two-stage process:

• Trigger classification: Labeling words in the
sentence with their predicted event type (if
any). For instance, in sentence S1, the ex-
traction system should label “wounded” as a
trigger of an Injury event, and label “blast” as
a trigger of an Attack event.
• Argument classification: If a sentence con-

tains predicted event triggers {ti}, we pair
each ti with each entity and time mention
{mj} in the sentence to generate candidate
event arguments. Given a candidate event ar-
gument (ti,mj), the system predicts its asso-
ciated event role (if any). For instance, given
(“wounded”, “airport”), the system should
predict the event role Place.

3 Approach

3.1 A Convolutional Neural Network Model
for Event Extraction

We developed a convolution neural network
(CNN) model to perform event trigger classifica-
tion, and another CNN model for event argument
classification used with our novel trigger and argu-
ment example collection approaches. Both CNN

Figure 2: A CNN based model for event argument
classification. WE is word embeddings. PEt and
PEa are position embeddings, capturing a token’s dis-
tance to the candidate trigger and argument respec-
tively. These position embeddings are randomly ini-
tialized and learnt during training.

models are very similar, with the argument model
incorporating more features. Hence, we will de-
scribe the argument model in detail, then provide
a summary of the trigger model.

As shown in Figure 2, the argument model con-
sists of (1) an embedding layer to encode words
and word positions in the sentence, (2) a convolu-
tion and max pooling layer to generate high-level
features from the embedding representation of the
sentence, (3) a layer which concatenates the max
pool layer and local context window around the
candidate trigger and argument, (4) followed by
the softmax function for classifying the example
into one of the target classes.

For argument classification, the input is a sen-
tence in which a trigger word and a candi-
date event argument is identified, e.g. (“relief”,
“states”) in Figure 2.

Embedding Layer encodes each word with:

• Word embeddings (WE): Given an input sen-
tence x of length t, we first transform each
word into a real-valued vector of dimension
d1 by looking up a word embedding matrix
W 1 ∈ Rd1×|V |, where V is the vocabulary.
We use word embeddings trained by Baroni
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et al. (2014), which achieved state-of-the-art
results in a variety of NLP tasks.
• Position embeddings (PE): PEt encodes the

relative distance of each word to the trigger
word as a real-valued vector of dimension
d2 by a embedding matrix W 2 ∈ Rd2×|D|,
where D is the set of relative distances in a
dataset. W 2 is randomly initialized and learnt
during training. We similarly use PEa to en-
code relative distances to the candidate argu-
ment, by defining W 3 ∈ Rd3×|D|.

The final embedding dimension for each token is
n1 = (d1 + d2 + d3). This layer produces an
embedding representation x(1) ∈ Rn1×t when fed
with an input sentence x(0) = x.

Convolution and Max Pooling Layer: We use
a set of filters with different window sizes to cap-
ture important n-gram features from an input sen-
tence. Due to space constraints, we omit the def-
initions of the convolution and max pool layers.
We denote the max pool layer using a fixed-sized
feature vector x(2) ∈ Rn2 , where n2 is the total
number of filters.

Concatenate Layer: We select the word em-
beddings of the trigger, the candidate argument,
and their local windows. We define the window
surrounding a word, as the k=3 tokens to the left
and right of the word. We concatenate these em-
beddings to the max pool layer, to obtain a con-
catenated vector x(3).

Event Argument Classification: We have o =
W (3)x(3) +b(3), where W (3) and b(3) are param-
eters learnt in this layer. Here, o ∈ Rn3 , where
n3 is equal to the number of event argument roles
including the “NONE” label for candidate argu-
ments which are not actual event arguments to the
trigger. Given an input example x, our network
with parameters θ outputs the vector o, where the
i-th component contains the score for event role i.
To obtain the conditional probability p(i|x, θ), we
apply softmax:

p(i|x, θ) = eoi∑
j e

oj
(1)

The CNN for trigger classification is largely the
same as the above CNN for argument classifica-
tion, omitting just the argument associated fea-
tures, i.e. PEa and the argument window shown
at the bottom of Figure 2. The input is a sentence
in which a word is the candidate trigger word, e.g.
“relief” in Figure 2. The output is a softmax func-

tion predicting one of the event type or NONE, in-
dicating the candidate word is not a valid trigger
for any of the event types.

3.2 Rapid Customization for Event Trigger
Extraction

Our system enables rapidly gathering of event trig-
ger examples for new event types with minimal
human effort, aided by the UI shown in Figure 1,
using this work flow:

• Given a new target event type, the user
first provides some initial keywords. The
UI (backed by an unannotated text corpus)
presents up to 3 text snippets (sentences)
mentioning each trigger.
• The user can then easily gather additional dis-

criminative keywords using the UI via inter-
active search. By clicking on the “Find simi-
lar” button in each pane, the system will sug-
gest new event keywords that are similar to
the current set of keywords, displaying these
suggested keywords in the working pane on
the left of the UI. Our system suggests new
keywords using WordNet hyponyms and co-
sine similarity in a word embedding space.
• The user can then repeat this process for ad-

ditional event types. This can be seen in Fig-
ure 1, where each pane (column) shows an
event type name at the top, followed by event
triggers (in red) and text snippets (clickable
to expand to full sentence) mentioning these
triggers.
• The user can edit between event types by drag

and drop, moving a trigger or snippet from
one event to another. The user can also click
on “−” to remove an event, a trigger with
its snippets, or just a snippet. The user can
also click on the “More” button to the right of
each trigger, to display additional text snip-
pets containing the trigger.
• When the user is satisfied with the current

set of keywords and associated text snip-
pets, our system then performs distant super-
vision (Mintz et al., 2009) by using the oc-
currences of these keywords (their associated
text snippets) as event trigger examples for
the new event type.

In practice, over a set of 67 new event types de-
scribed in Section 4.2, the user spent an average of
4.5 minutes to provide 8.6 initial triggers and asso-
ciated text snippets. Then another 5 minutes inter-
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acting with the UI to expand and filter the triggers,
for a total of less than 10 minutes per event type.

3.3 Argument Extraction for New Events
Current argument examples, such as those defined
in ACE, are event type specific. For instance,
the ACE corpus annotates Agent and Victim ar-
guments for Injure events, Attacker and Target ar-
guments for Attack events, etc. To decode event
arguments for new event types, one need to anno-
tate new event type specific argument examples as
training data.

In this paper, we propose a simple approach to
learn a generic event argument model to extract
Actor, Place, and Time arguments for any new
event types, without annotating new examples.
We define Actor as a coarse-grained event argu-
ment role, encompassing Agent-like and Patient-
like event roles. We map Actor-like argument
roles in ACE to a common Actor role label, and
use the Place and Time arguments in as they ap-
pear in ACE. The complete list of ACE event ar-
gument roles that we mapped to Actor are:

• Agent, Artifact, Adjudicator, Victim, Buyer,
Seller, Giver, Recipient, Org, Attacker, Tar-
get, Entity, Defendant, Person, Plaintiff,
Prosecutor

Using the above mapping approach, we train a
generic event argument classifier that can extract
Actor, Place, and Time arguments for any event
type.

4 Experiments

4.1 Verifying Event Extraction Model
We first conduct experiments to verify that our
CNN model implementation achieves compara-
ble performance to state-of-the-art CNN-based
event extraction systems (Chen et al., 2015; Boros,
2018) to ensure that it is suitable for use in our
rapid event customization approach. Following
these prior work, we use the ACE-2005 corpus,
with the same sets of 529 training documents, 30
development documents, and 40 test documents.
We use the same following criteria to judge the
correctness of our event extractions: A trigger is
correctly classified if its event subtype and offsets
match those of a reference trigger; an argument is
correct classified if its event subtype, event argu-
ment role, and offsets match any of the reference
event arguments.

Cds Cadj Cds′ Dev Test
#articles 818 618 618 274 273
#triggers 1674 1171 1258 643 752

Table 1: Counts of articles and trigger examples, in
training corpora for distant supervision (Cds), distant
supervision followed by human adjudication (Cadj),
and sampled distant supervision (Cds′ ), as well as cor-
pora for development (Dev) and test (Test).

Since the ratio of positive (valid) vs negative
examples is relatively skewed (for instance, most
words in a sentence are not triggers), we tried dif-
ferent weights for the positive examples: 1, 3, 5,
or 10. We tune this and other hyper-parameters
(batch size, number of CNN filters, number of
epoches) on the development documents. We also
follow (Chen et al., 2015) by using the Adadelta
update rule with parameters ρ = 0.95 and ε =
1e−6, and a dropout rate of 0.5. On the ACE test
data, our trigger model achieves an F1 score of
0.65, close to the scores of 0.66 and 0.68 reported
in (Chen et al., 2015) and (Boros, 2018) respec-
tively. Our argument model using gold triggers2

achieves an F1 score of 0.53, close to the score of
0.55 reported in (Boros, 2018).

4.2 Event Customization Evaluation
To evaluate the effectiveness of our event ex-
traction system in customizing extractors for new
event types, we present experiment results based
on the Common Core Ontologies3 (CCO). CCO
comprises 11 ontologies and is aimed at repre-
senting semantics for many domains of interests.
We sampled 67 event types that are not in exist-
ing event schemas (such as ACE and TAC-KBP4),
to evaluate how well our system does on novel
event types. As our experiment corpus C, we use
6,000 allafrica.com news articles, published be-
tween 2016-2017.

4.2.1 Trigger Classification
Given the set of 67 new event types, we leverage
our UI to obtain a set of keywords that are as-
sociated with about 3,000 trigger examples span-
ning 1,365 articles. We split these examples at the
article level via a 60/20/20 train/development/test
split. We show the statistics of our data in Table 1.
We then trained the following models:

• We trained a trigger model Tds using the
1,674 training examples Cds. Note that Cds

2Since comparisons using predicted triggers obfuscate
event argument performance.

3https://github.com/CommonCoreOntology
4https://tac.nist.gov/2017/KBP/Event/index.html
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Type Triggers
Ceremony celebration, ceremony, parade,

commemoration, feast, ...
Criminal
Act

abduction, assassin, assault, ban-
dit, blackmail, bribery, ...

Cyber
Attack

botnet, cyber attack, cyber war,
cyber warfare, cybercrime, ...

Espionage espionage, infiltrate, infiltrator,
mole, saboteur, spy

Table 2: Sample triggers for some CCO event types.

Precision Recall F1
Tds 0.69 0.50 0.58
Tadj 0.69 0.46 0.55
Tds′ 0.62 0.40 0.48

Table 3: Event trigger results on new CCO event types.

consists of distant supervised (DS) trigger ex-
amples which are potentially noisy.
• We adjudicated Cds, obtaining a smaller set of

1,171 trigger examples Cadj , which we used
to train a trigger model Tadj .

Table 2 shows examples of triggers identified by
our in-house developer for sampled CCO events.
When evaluated on the test examples, Tds and Tadj
achieve F1 scores of 0.58 and 0.55 respectively
(shown in Table 3).

The impact of corpora size Surprisingly, the
DS model Tds (trained on the noisy distance su-
pervised Cds) performs better than the model Tadj
(trained on the manually adjudicated Cadj). One
possible explanation is because Cadj is a subset
of Cds and contains significantly fewer examples,
since only trigger examples that are judged to be
correct for the event types are kept.

Table 1 shows that Cadj contains substantially
fewer examples than Cds (1,171 vs 1,674). To ver-
ify that the larger number of training examples is a
reason for Tds’s higher performance, we randomly
down-sampled Cds to have the same number of
documents as Cadj . Using the resulting Cds′ , we
trained the trigger model Tds′ . When evaluated on
the test data, this obtains a F1 score of 0.48, which
is indeed worse than Tadj as expected, thus con-
firming our hypothesized explanation. We show
these results in Table 3.

4.2.2 Argument Extraction
We apply the mapping approach described in Sec-
ton 3.3 on the ACE data. We learn a generic ar-
gument model Agen on the mapped training data,
obtaining a F1 score of 0.50 when evaluated on the
mapped ACE test data (Table 4). For comparison,

Model Overall F1
P R F1 Actor Place Time

Agen 0.65 0.41 0.50 0.49 0.37 0.61
Aout 0.41 0.62 0.49 0.49 0.45 0.62
Table 4: Event argument results using gold triggers.

we also trained a model using the original ACE
event roles in the standard way, but report results
after mapping predicted and reference roles to a
common Actor role. We obtained a similar test F1
score of 0.50.

We note that Agen trains on the entire ACE
training data. However, the motivation for the
mapping is to learn an argument model for de-
coding on new event types not previously seen
in its training data. Hence, we conduct an addi-
tional set of leave-1-out experiments Aout. ACE
defines event types at a coarse-grained (8 types)
and a fine-grained (33 types) level. Hence in each
fold i, we omit argument examples associated with
a coarse-grained ACE event type i from training,
then proceed to calculate performance on just ar-
gument test examples associated with event type
i. We aggregate the test results over all folds in
row Aout of Table 4. We note that Aout achieves
reasonable performance when compared against
Agen, demonstrating the viability of our approach
towards extracting event arguments for previously
unseen new event types.

Using Tds and Agen as the trigger and argument
models, we decoded on our CCO test data. Of a
set of randomly selected 78 Actor, 8 Place, and 14
Time arguments predicted by Agen, we determine
that 62 Actor, 7 Place, and 10 Time arguments
are correctly predicted, for an overall precision of
0.79.

5 Related Work
Recent event extraction work usually employ neu-
ral network (NN) models, such as CNN-based
models (Chen et al., 2015; Boros, 2018) and
joint event extraction using recurrent neural net-
works (Nguyen et al., 2016a).

In event extraction using limited training data,
Nguyen et al. (2016b) proposed a two-stage NN
model for event type extension. Given a new
event type with a small set of seed examples, they
leverage examples from other event types. In an-
other work, Peng et al. (2016) developed a min-
imally supervised approach to event trigger ex-
traction by leveraging trigger examples gathered
from the ACE annotation guidelines. Ferrero et
al. (2017) presented InToEventS, an interactive
tool for building event schemas. Their work dif-
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fers from ours in several important aspects. Their
tool produces schemas (triggers and role patterns)
of events based on clusters, whereas our tool al-
lows users to rapidly produce event trigger exam-
ples. Our tool also allows these examples to be
adjudicated, allows multiple event types to be ex-
amined in parallel in the same UI, and triggers (or
snippets) to be shifted across different event types.
Finally, we demonstrate a viable approach for ex-
tracting Actor, Place, and Time arguments of new
event types without any additional annotation ef-
fort.

A closely related direction is rapid customiza-
tion of systems for other information extraction
(IE) tasks. The ICE system (He and Grish-
man, 2015) allows a user to interactively cre-
ate new classes of entities and relations. The
main ideas are user-in-the-loop entity set expan-
sion and boostrap learning for relation extraction.
The WIZIE (Li et al., 2012) system guides users
to write rules for IE. Finally, Michael and Akbik
(2015) and Freedman et al. (2011) presented sys-
tems for interactively building relation extractors.

6 Conclusion and Future Work
We presented a system which allows a user to
rapidly build event extractors to find new types of
events and their arguments. We plan to use clus-
tering techniques to automatically discover salient
event trigger words in a new corpus, to further re-
duce human customization effort.
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