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1 Introduction 

The NYU Knowledge Base Population (KBP) slot 

filling system for 2011 was built upon the system 

for 2010. The primary addition was a set of 

classifiers trained using distant supervision. A 

secondary addition involved a slot-specific passage 

retrieval system combined with name-type-based 

answer selection -- in effect, a simple QA system. 

In the three sections that follow, we review the 

2010 baseline system and describe the distant 

supervision and QA components.  Following that, 

we report on this year‟s results, including the 

contribution of the individual system components. 

2 Baseline:  NYU KBP 2010 system 

We describe first the baseline system, whose basic 

structure was unchanged from 2010 (Grishman and 

Min 2010), although a number of small 

refinements were made based on an error analysis 

of last year‟s results.  These included a larger list 

of titles and an improved rule for distinguishing 

members from employees. 

The NYU system, like most KBP systems, has 3 

basic components:  document retrieval, answer 

extraction, and merging. 

Document retrieval uses Lucene to retrieve a 

maximum of 300 documents from the corpus; the 

retrieval query consists of the query name and 

some minor name variants (omitting middle 

initials, corporate suffixes).  To avoid bogging 

down the system with the occasional very long 

document, documents exceeding 40,000 characters 

are ignored.  No use is made of the document 

given in the query to disambiguate ambiguous 

names. 

Answer extraction begins with text analysis – part-

of-speech tagging, chunking, name tagging, time 

expression tagging, and coreference – performed 

using the NYU Jet system.  The results of 

coreference are used to fill the KBP 

alternate_names slots. Other slots are filled 

through a combination of hand-coded patterns and 

patterns created semi-automatically using 

bootstrapping.  These patterns are organized into a 

set of response generators which are applied 

independently to the document; after all generators 

have been applied, we select the best answer (for 

single-valued slots) or eliminate redundant answers 

(for list-valued slots). 

The hand-coded patterns operate within a noun 

group or between two noun groups connected by a 

preposition.  These include the pattern sets in 

Table 1. 

A few notes: 

1. GPE = geo-political entity, a location with 

a government [an ACE semantic class] 

2. Titles are recognized using a list of 

approximately 600 titles gathered from 

Wikipedia infoboxes and edited by hand.  

Titles preceded by „assistant‟, „deputy‟, or 

„vice‟ are excluded for the 

top_members/employees slot. 

3. Employee_of is distinguished from 

member_of based on the type of 

organization:  non-governmental and 

sports organizations (based on the ACE 

classification) have members; other 

organizations have employees. As a 

special case, coaches and managers of 

sports organizations are treated as 

employees.  
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pattern set patterns slots 

local patterns for 

person queries 

title of org, org title, org‟s title, title title, employee_of 

title in GPE, GPE title origin, location_of_residence 

person, integer, age 

local patterns for 

org queries 

title of org, org title, org‟s title top_members/employees 

GPE‟s org, GPE-based org, org of 

GPE, org in GPE 

location_of_headquarters 

org‟s org subsidiaries / parent 

implicit organzation title [where there is a unique org 

mentioned in the current + prior 

sentence] 

employee_of [for person queries]; 

top_members/employees [for org queries] 

functional noun F of X, X‟s F 

where F is a functional noun 

family relations;  org parents and subsidiaries 

 

Table 1: Pattern Sets 

 

4. Location_of slots are divided into 

countries, states, and cities based on 

simple table look-up, using tables of 

counties and U.S. states (anything not in 

this table is classified as a city) 

The bootstrapped patterns are created starting from 

a small set of seed patterns for each KBP slot, 

growing the set through semi-supervised learning 

using the KBP corpus, and manually reviewing the 

resulting patterns.  Separate sets of patterns are 

produced matching linear token sequences and 

matching dependency tree paths.   The dependency 

structures are built using the Stanford English 

parser.  The bootstrapping process is described in 

detail in last year‟s report (Grishman and Min 

2010).  

Post-processors are applied following pattern 

matching:  to distinguish employees from 

members, and to distinguish countries, states, and 

cities. 

Finally the merging stage combines answers from 

different documents and passages, and from 

different answer extraction procedures. 

3 Distant supervision 

The primary addition to our KBP system was a set 
of maximum entropy classifiers for slot filling, 
trained through distant supervision (Mintz et al. 
2009).  The training procedure used the Freebase 
knowledge base and the KBP corpus. Selected 

relations in Freebase were mapped to 28 slots in 
the KBP task. The mapping table used was similar 
to the one in Chen et al. (2010). Roughly 4.1 
million relation instances were used for training 
(See Table 2 for more details). Given a pair of 
names ,i j  occurring together in a sentence in 
the KBP corpus, we treat it as a positive example 
if ,i j  is a Freebase relation instance and as a 
negative example if ,i j   is not a Freebase 
instance but , 'i j  is an instance for some j'j. 
These examples are used for both training 
maximum entropy classifiers and computing the 
precision of dependency patterns extracted from 
them. High-precision patterns based on the 
precision measure proposed in Section 3.2 for a 
few slots

1
 were reviewed by hand, producing a set 

of 792 patterns for filling slots using strict pattern 
matching. The resulting classifiers and the pattern 
matcher were used as additional sources of slot 
fills, generated in parallel with pattern matching 
from last year, and merged in the final stage of 
processing. This produced a significant 
improvement in overall performance (see Table 5), 
but not as much as we hoped.   
Below we first describe the features used for 

training classifiers and then discuss a few decisions 

that we made during the development of our 

distant learner: refinement of distantly generated 

                                                           
1 Due to time limitations, we only did this for the four slots: 

per:employee_of, per:member_of, org:founded_by, 

org:top_members/employees 



labels to reduce noise, undersampling of the 

majority class to achieve a more balanced class 

distribution and the use of coreference to 

incorporate more available information of the 

query entity for slot filling. 

 

Slot # Instances 

org:alternate_names 1049 

org:founded 57988 

org:founded_by 8203 

org:country_of_headquarters 248315 

org:stateorprovince_of_headquarters 

org:city_of_headquarters 

org:political/religious_affiliation 1735 

org:top_members/employees 67244 

per:cause_of_death 53149 

per:children 33042 

per:employee_of 97167 

per:member_of 256573 

per:origin 466211 

per:parents 33043 

per:country_of_birth 403519 

per:stateorprovince_of_birth 

per:city_of_birth 

per:country_of_death 109182 

per:stateorprovince_of_death 

per:city_of_death 

per:religion 80053 

per:countries_of_residence 170562 

per:stateorprovinces_of_residence 

per:cities_of_residence 

per:schools_attended 162737 

per:siblings 8211 

per:spouse 16588 

per:title 1832723 

Total 4107294 

 

Table 2: Freebase Instances for KBP Slots 

3.1 Feature Sets 

We extract features from both the token sequence 

and the dependency tree representations of the 

sentence containing the two names. We also 

extract features that capture the string and entity 

type information of the names, the order of the two 

names in the sentence (same or reversed relative to 

their order as a Freebase name pair) and a binary 

feature indicating whether there is a title in 

between the two names. Table 3 shows a brief 

description of the features and samples extracted 

for the Freebase name pair <Ray Young, General 

Motors> in the sentence “Ray Young, the chief 

financial officer of General Motors, said GM could 

not bail out Delphi”. For more detailed 

descriptions of the features and the intuition of 

why these features are extracted, please refer to 

(Sun et al., 2011). 

3.2 Class Label Refinement 

“All men are created equal”, unfortunately, is not 

true in knowledge bases such as Freebase. For 

example, some people have employers and 

residences while others do not. When we perform 

distant learning, i.e., matching Freebase records 

against unstructured texts to generate training 

examples, we typically label an example as 

negative if it has no corresponding entry in 

Freebase. However, Freebase is highly incomplete 

and hence many false negative examples are 

generated. Examples that match entries in Freebase 

are not always positive in reality, but are assumed 

to be and labeled as positive examples by distant 

learning. For example, the sentence “Bill Gates has 

declared war on Microsoft's insecure software” 

would be labeled as a positive example for the 

relation org:founded_by although the context does 

not indicate that relation. Even worse is the 

pervasive phenomenon where pairs of names are 

often connected by non-relational contexts such as 

conjunctions and the punctuation comma. This 

results in many false positive examples.  

To alleviate the impact of false positive and 

negative examples on the quality of learned 

models, we refine the class labels of distantly 

generated examples. Specifically, we extract 

dependency patterns from these examples and 

estimate the precision of a pattern for a class based 

on the statistics of the distantly generated class 

labels. The precision of a pattern p for the class 

ic is defined as the number of occurrences of p in 

the class ic  divided by the number of occurrences 

of p in any of the classes jc :  



prec(p,ci ) 
count(p,ci )

count(p,c j )
j


 

 



Feature Description Feature Value 

Dependency 

Tree 

Features 

dpath Shortest path connecting the two names in 

the dependency parsing tree coupled with 

entity types of the two names 

PERSON appos officer 

prep_of ORGANIZATION 

e1dh The head word for name one said 

e2dh The head word for name two officer 

same_e12dh Whether e1dh is the same as e2dh false 

e1dw The dependent word for name one officer 

e2dw The dependent word for name two nil 

Token 

Sequence  

Features 

tpattern The middle token sequence pattern  , the chief financial officer 

of 

ntw Number of words between the two names 6 

wbf First word in between , 

wbl Last word in between of 

wbo Other words in between {the, chief, financial, 

officer} 

bm1f First word before the first name nil 

bm1l Second word before the first name nil 

am2f First word after the second name , 

am2l Second word after the second name said 

Entity 

Features 

e1 String of name one Ray_Young 

e2 String of name two General_Motors 

e12 Conjunction of e1 and e2 Ray_Young--

General_Motors 

et1 Entity type of name one PERSON 

et2 Entity type of name two ORGANIZATION 

et12 Conjunction of et1 and et2 PERSON-- 

ORGANIZATION 

Semantic  

Feature 

mTitle Title in between true 

Order  

Feature 

order 1 if name one comes before name two; 2 

otherwise. 

1 

 

Table 3: Feature Sets 

 

The class label refinement algorithm utilizes two 

types of precision, prec1 and prec2, computed with 

the sum including and excluding the class OTHER 

(not a defined KBP slot), respectively. 

 

Let 

    top_class1(p) = the class c (including OTHER) 

        which maximizes prec1(p, c) 

    top_class2(p) = the class c (excluding OTHER) 

        which maximizes prec2(p, c) 

    top_prec1(p) = the max of prec1(p, c) 

    top_prec2(p) = the max of prec2(p, c) 

 

Then we refine the class of p using the following 

rule: 

 

  if (top_class1(p) == “OTHER”) { 

      if (top_prec2(p) < 0.5 | top_prec2(p) == 1)  

          return “OTHER” 

      else  

          return top_class2(p)} 

  else if top_prec1(p) >= 0.3 

      return top_class1(p) 

  else  

      return “OTHER” 

 

Cutoff values were selected by eyeballing the 

quality of patterns.    



To see why this refinement gives more accurate 

class labels, taking the pattern “appos chairman 

prep_of” as an example; most of the time it was 

labeled as OTHER because of the incompleteness 

of Freebase. After we compute prec1 and prec2, 

every example (including those were labeled as 

OTHER) that is associated with this pattern will be 

refined to the class per:employee_of.  

Figures 1, 2 and 3 show the results averaged on 10 

runs on the 2011 evaluation data using different 

undersampling ratios, which is defined as the ratio 

between negative and positive examples (see 

Section 3.3 for more details). Under each setting of 

the undersampling ratio, models trained with 

refined class labels (MR and SR) outperformed 

models trained without refined labels (MNR and 

SNR) by large margins. This indicates the 

superiority of the proposed class label refinement 

method in distant learning for slot filling. It is also 

noticeable that the performance curves of models 

trained with refined labels are much flatter than 

those of models trained without refined labels, 

reflecting that they are less sensitive to the 

undersampling ratio parameter and more robust to 

noise. 

 

Slot Freq. prec1 prec2 

per:member_of 59 0.038 0.175 

org:top_members 

/employees 

20 0.013 0.059 

per:employee_of 254 0.164 0.754 

org:founded_by 4 0.003 0.012 

OTHER 1208 0.782 NA 

 

Table 4: Pattern “appos chairman prep_of” 

3.3 Undersampling the Majorities 

Distant learning also produces an extremely 

unbalanced class distribution. Traditionally, a 

single n-way classifier is trained to distinguish 

among the n classes. We empirically found that 

this classifier is biased towards a few majority 

classes and tends to ignore the minority classes. 

For example, the single n-way classifier on average 

produced 180 fills for only 8 slots. As an 

alternative, we train one n-way classifier for each 

pair of named entity types. For example, we train a 

multi-class classifier for the entity type pair 

PERSON and ORGANIZATION and train another 

one for PERSON and PERSON. There is still a 

majority class for each such n-way classifier, 

namely the class that cannot be mapped to any 

KBP slot even after label refinement. We then 

downsize the majority class by randomly selecting 

a subset of its examples.  

Multiple n-way classifiers not only produced more 

fills for more slots (on average 240 fills for 15 

slots), but also provided better F-Measure than the 

single n-way classifier. This was mainly achieved 

by an improved recall as shown in Figure 3.      

Undersampling Ratio

0 1 2 3 4 5 6 7 8 9

F
-M

e
a
s
u

re

.02

.04

.06

.08

.10

.12

.14

.16

.18

Figure 1: F-Measure 

Undersampling Ratio

0 1 2 3 4 5 6 7 8 9

P
re

c
is

io
n

.15

.20

.25

.30

.35

.40

.45

.50

.55

Figure 2: Precision 



Undersampling Ratio

0 1 2 3 4 5 6 7 8 9

R
e
c
a
ll

.02

.04

.06

.08

.10

.12

Figure 3: Recall 

 

 
 

3.4 Contribution of Coreference 

For the sake of matching accuracy, the training of 

distant learning relies on strict match of names. 

When we actually fill slots for a given query, its 

co-referred names in a single document can be 

provided by a co-reference module. Our submitted 

runs used the co-referred names of the query in 

both the distantly trained classifiers and the simple 

dependency pattern matcher which together 

achieved P/R/F of 36.4/11.4/17.4 on the 2011 

evaluation data. The use of co-reference is clearly 

beneficial to our system; without using it the P/R/F 

dropped to 28.8/10.0/14.3. Note that the results in 

the three figures above were also obtained using 

the coreference information. 

4 Passage retrieval / QA 

One further component incorporated into this 

year‟s system was based on passage retrieval and 

name typing.  For each slot, a set of index terms is 

generated using distant supervision (again, using 

Freebase) and these terms are used to retrieve and 

rank passages for a specific slot (Xu et al. 2011).  

An answer is then selected based on name type and 

distance from the query name. This is used as a 

fall-back strategy, if the other answer extraction 

components did not find any slot fill. Due to 

limitations of time, this procedure was only 

implemented for a few slots (employer and 

headquarters location) and the constraints were not 

tight enough to improve overall slot-filling 

performance. 

 

 

module 

score using only module score excluding module 

recall precision F1 recall precision F1 

distant supervision overall 11.4 36.4 17.4 20.2 35.4 25.7 

distant supervision classifier 10.0 37.9 15.4 21.1 34.5 26.2 

distant supervision pattern matcher  2.0 28.6 3.6 24.7 35.7 29.2 

alternate names 2.8 45.7 5.4 23.0 34.1 27.5 

local patterns 14.4 41.0 21.3 18.5 33.4 23.8 

implicit organization 0.6 5.5 1.1 25.0 39.2 30.5 

functional nouns 0.5 23.8 1.0 25.1 35.3 29.3 

bootstrapped linear patterns 3.5 54.1 6.6 24.8 34.6 28.9 

bootstrapped dependency patterns 1.8 36.2 3.4 25.0 35.2 29.2 

 

Table 5: Ablation Study of the System NYU2 



5 Results 

Because the passage/QA component was added at 

the last minute, we thought it prudent to submit 

one run with this component (NYU1) and one run 

without (NYU2).  It turned out (as just noted) that 

this component was underconstrained. It added 35 

slots fills, only two of which were correct; NYU2 

had better performance: 

 

 

Table 6: Performance of NYU Systems 

 

Using NYU2 as a base, we then measured the 

contribution of each module in isolation and the 

performance of the system when each module was 

removed in turn (ablation study).
2
  As one can see 

from Table 5, the hand-coded local patterns by 

themselves and the classifier trained by distant 

supervision by itself provided quite good 

performance.  There is a lot of overlap between the 

contributions of the different modules, but the 

ablation study indicates that all modules made a 

positive contribution to the final result except for 

the implicit organization module, which had 

satisfactory precision on the training data but very 

poor precision on the test data. 
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 Recall Precision F1 

NYU1 25.7 33.6 29.1 

NYU2 25.5 35.0 29.5 


