
New York University 2011 System for KBP Slot Filling

1 Introduction

The NYU Knowledge Base Population (KBP) slot

filling system for 2011 was built upon the system

for 2010. The primary addition was a set of

classifiers trained using distant supervision. A

secondary addition involved a slot-specific passage

retrieval system combined with name-type-based

answer selection -- in effect, a simple QA system.

In the three sections that follow, we review the

2010 baseline system and describe the distant

supervision and QA components. Following that,

we report on this year‟s results, including the

contribution of the individual system components.

2 Baseline: NYU KBP 2010 system

We describe first the baseline system, whose basic

structure was unchanged from 2010 (Grishman and

Min 2010), although a number of small

refinements were made based on an error analysis

of last year‟s results. These included a larger list

of titles and an improved rule for distinguishing

members from employees.

The NYU system, like most KBP systems, has 3

basic components: document retrieval, answer

extraction, and merging.

Document retrieval uses Lucene to retrieve a

maximum of 300 documents from the corpus; the

retrieval query consists of the query name and

some minor name variants (omitting middle

initials, corporate suffixes). To avoid bogging

down the system with the occasional very long

document, documents exceeding 40,000 characters

are ignored. No use is made of the document

given in the query to disambiguate ambiguous

names.

Answer extraction begins with text analysis – part-

of-speech tagging, chunking, name tagging, time

expression tagging, and coreference – performed

using the NYU Jet system. The results of

coreference are used to fill the KBP

alternate_names slots. Other slots are filled

through a combination of hand-coded patterns and

patterns created semi-automatically using

bootstrapping. These patterns are organized into a

set of response generators which are applied

independently to the document; after all generators

have been applied, we select the best answer (for

single-valued slots) or eliminate redundant answers

(for list-valued slots).

The hand-coded patterns operate within a noun

group or between two noun groups connected by a

preposition. These include the pattern sets in

Table 1.

A few notes:

1. GPE = geo-political entity, a location with

a government [an ACE semantic class]

2. Titles are recognized using a list of

approximately 600 titles gathered from

Wikipedia infoboxes and edited by hand.

Titles preceded by „assistant‟, „deputy‟, or

„vice‟ are excluded for the

top_members/employees slot.

3. Employee_of is distinguished from

member_of based on the type of

organization: non-governmental and

sports organizations (based on the ACE

classification) have members; other

organizations have employees. As a

special case, coaches and managers of

sports organizations are treated as

employees.

Ang Sun, Ralph Grishman, Wei Xu, Bonan Min

Computer Science Department

New York University

{asun, grishman, xuwei, min}@cs.nyu.edu

pattern set patterns slots

local patterns for

person queries

title of org, org title, org‟s title, title title, employee_of

title in GPE, GPE title origin, location_of_residence

person, integer, age

local patterns for

org queries

title of org, org title, org‟s title top_members/employees

GPE‟s org, GPE-based org, org of

GPE, org in GPE

location_of_headquarters

org‟s org subsidiaries / parent

implicit organzation title [where there is a unique org

mentioned in the current + prior

sentence]

employee_of [for person queries];

top_members/employees [for org queries]

functional noun F of X, X‟s F

where F is a functional noun

family relations; org parents and subsidiaries

Table 1: Pattern Sets

4. Location_of slots are divided into

countries, states, and cities based on

simple table look-up, using tables of

counties and U.S. states (anything not in

this table is classified as a city)

The bootstrapped patterns are created starting from

a small set of seed patterns for each KBP slot,

growing the set through semi-supervised learning

using the KBP corpus, and manually reviewing the

resulting patterns. Separate sets of patterns are

produced matching linear token sequences and

matching dependency tree paths. The dependency

structures are built using the Stanford English

parser. The bootstrapping process is described in

detail in last year‟s report (Grishman and Min

2010).

Post-processors are applied following pattern

matching: to distinguish employees from

members, and to distinguish countries, states, and

cities.

Finally the merging stage combines answers from

different documents and passages, and from

different answer extraction procedures.

3 Distant supervision

The primary addition to our KBP system was a set
of maximum entropy classifiers for slot filling,
trained through distant supervision (Mintz et al.
2009). The training procedure used the Freebase
knowledge base and the KBP corpus. Selected

relations in Freebase were mapped to 28 slots in
the KBP task. The mapping table used was similar
to the one in Chen et al. (2010). Roughly 4.1
million relation instances were used for training
(See Table 2 for more details). Given a pair of
names ,i j  occurring together in a sentence in
the KBP corpus, we treat it as a positive example
if ,i j  is a Freebase relation instance and as a
negative example if ,i j  is not a Freebase
instance but , 'i j  is an instance for some j'j.
These examples are used for both training
maximum entropy classifiers and computing the
precision of dependency patterns extracted from
them. High-precision patterns based on the
precision measure proposed in Section 3.2 for a
few slots

1
 were reviewed by hand, producing a set

of 792 patterns for filling slots using strict pattern
matching. The resulting classifiers and the pattern
matcher were used as additional sources of slot
fills, generated in parallel with pattern matching
from last year, and merged in the final stage of
processing. This produced a significant
improvement in overall performance (see Table 5),
but not as much as we hoped.
Below we first describe the features used for

training classifiers and then discuss a few decisions

that we made during the development of our

distant learner: refinement of distantly generated

1 Due to time limitations, we only did this for the four slots:

per:employee_of, per:member_of, org:founded_by,

org:top_members/employees

labels to reduce noise, undersampling of the

majority class to achieve a more balanced class

distribution and the use of coreference to

incorporate more available information of the

query entity for slot filling.

Slot # Instances

org:alternate_names 1049

org:founded 57988

org:founded_by 8203

org:country_of_headquarters 248315

org:stateorprovince_of_headquarters

org:city_of_headquarters

org:political/religious_affiliation 1735

org:top_members/employees 67244

per:cause_of_death 53149

per:children 33042

per:employee_of 97167

per:member_of 256573

per:origin 466211

per:parents 33043

per:country_of_birth 403519

per:stateorprovince_of_birth

per:city_of_birth

per:country_of_death 109182

per:stateorprovince_of_death

per:city_of_death

per:religion 80053

per:countries_of_residence 170562

per:stateorprovinces_of_residence

per:cities_of_residence

per:schools_attended 162737

per:siblings 8211

per:spouse 16588

per:title 1832723

Total 4107294

Table 2: Freebase Instances for KBP Slots

3.1 Feature Sets

We extract features from both the token sequence

and the dependency tree representations of the

sentence containing the two names. We also

extract features that capture the string and entity

type information of the names, the order of the two

names in the sentence (same or reversed relative to

their order as a Freebase name pair) and a binary

feature indicating whether there is a title in

between the two names. Table 3 shows a brief

description of the features and samples extracted

for the Freebase name pair <Ray Young, General

Motors> in the sentence “Ray Young, the chief

financial officer of General Motors, said GM could

not bail out Delphi”. For more detailed

descriptions of the features and the intuition of

why these features are extracted, please refer to

(Sun et al., 2011).

3.2 Class Label Refinement

“All men are created equal”, unfortunately, is not

true in knowledge bases such as Freebase. For

example, some people have employers and

residences while others do not. When we perform

distant learning, i.e., matching Freebase records

against unstructured texts to generate training

examples, we typically label an example as

negative if it has no corresponding entry in

Freebase. However, Freebase is highly incomplete

and hence many false negative examples are

generated. Examples that match entries in Freebase

are not always positive in reality, but are assumed

to be and labeled as positive examples by distant

learning. For example, the sentence “Bill Gates has

declared war on Microsoft's insecure software”

would be labeled as a positive example for the

relation org:founded_by although the context does

not indicate that relation. Even worse is the

pervasive phenomenon where pairs of names are

often connected by non-relational contexts such as

conjunctions and the punctuation comma. This

results in many false positive examples.

To alleviate the impact of false positive and

negative examples on the quality of learned

models, we refine the class labels of distantly

generated examples. Specifically, we extract

dependency patterns from these examples and

estimate the precision of a pattern for a class based

on the statistics of the distantly generated class

labels. The precision of a pattern p for the class

ic is defined as the number of occurrences of p in

the class ic divided by the number of occurrences

of p in any of the classes jc :



prec(p,ci) 
count(p,ci)

count(p,c j)
j



Feature Description Feature Value

Dependency

Tree

Features

dpath Shortest path connecting the two names in

the dependency parsing tree coupled with

entity types of the two names

PERSON appos officer

prep_of ORGANIZATION

e1dh The head word for name one said

e2dh The head word for name two officer

same_e12dh Whether e1dh is the same as e2dh false

e1dw The dependent word for name one officer

e2dw The dependent word for name two nil

Token

Sequence

Features

tpattern The middle token sequence pattern , the chief financial officer

of

ntw Number of words between the two names 6

wbf First word in between ,

wbl Last word in between of

wbo Other words in between {the, chief, financial,

officer}

bm1f First word before the first name nil

bm1l Second word before the first name nil

am2f First word after the second name ,

am2l Second word after the second name said

Entity

Features

e1 String of name one Ray_Young

e2 String of name two General_Motors

e12 Conjunction of e1 and e2 Ray_Young--

General_Motors

et1 Entity type of name one PERSON

et2 Entity type of name two ORGANIZATION

et12 Conjunction of et1 and et2 PERSON--

ORGANIZATION

Semantic

Feature

mTitle Title in between true

Order

Feature

order 1 if name one comes before name two; 2

otherwise.

1

Table 3: Feature Sets

The class label refinement algorithm utilizes two

types of precision, prec1 and prec2, computed with

the sum including and excluding the class OTHER

(not a defined KBP slot), respectively.

Let

 top_class1(p) = the class c (including OTHER)

 which maximizes prec1(p, c)

 top_class2(p) = the class c (excluding OTHER)

 which maximizes prec2(p, c)

 top_prec1(p) = the max of prec1(p, c)

 top_prec2(p) = the max of prec2(p, c)

Then we refine the class of p using the following

rule:

 if (top_class1(p) == “OTHER”) {

 if (top_prec2(p) < 0.5 | top_prec2(p) == 1)

 return “OTHER”

 else

 return top_class2(p)}

 else if top_prec1(p) >= 0.3

 return top_class1(p)

 else

 return “OTHER”

Cutoff values were selected by eyeballing the

quality of patterns.

To see why this refinement gives more accurate

class labels, taking the pattern “appos chairman

prep_of” as an example; most of the time it was

labeled as OTHER because of the incompleteness

of Freebase. After we compute prec1 and prec2,

every example (including those were labeled as

OTHER) that is associated with this pattern will be

refined to the class per:employee_of.

Figures 1, 2 and 3 show the results averaged on 10

runs on the 2011 evaluation data using different

undersampling ratios, which is defined as the ratio

between negative and positive examples (see

Section 3.3 for more details). Under each setting of

the undersampling ratio, models trained with

refined class labels (MR and SR) outperformed

models trained without refined labels (MNR and

SNR) by large margins. This indicates the

superiority of the proposed class label refinement

method in distant learning for slot filling. It is also

noticeable that the performance curves of models

trained with refined labels are much flatter than

those of models trained without refined labels,

reflecting that they are less sensitive to the

undersampling ratio parameter and more robust to

noise.

Slot Freq. prec1 prec2

per:member_of 59 0.038 0.175

org:top_members

/employees

20 0.013 0.059

per:employee_of 254 0.164 0.754

org:founded_by 4 0.003 0.012

OTHER 1208 0.782 NA

Table 4: Pattern “appos chairman prep_of”

3.3 Undersampling the Majorities

Distant learning also produces an extremely

unbalanced class distribution. Traditionally, a

single n-way classifier is trained to distinguish

among the n classes. We empirically found that

this classifier is biased towards a few majority

classes and tends to ignore the minority classes.

For example, the single n-way classifier on average

produced 180 fills for only 8 slots. As an

alternative, we train one n-way classifier for each

pair of named entity types. For example, we train a

multi-class classifier for the entity type pair

PERSON and ORGANIZATION and train another

one for PERSON and PERSON. There is still a

majority class for each such n-way classifier,

namely the class that cannot be mapped to any

KBP slot even after label refinement. We then

downsize the majority class by randomly selecting

a subset of its examples.

Multiple n-way classifiers not only produced more

fills for more slots (on average 240 fills for 15

slots), but also provided better F-Measure than the

single n-way classifier. This was mainly achieved

by an improved recall as shown in Figure 3.

Undersampling Ratio

0 1 2 3 4 5 6 7 8 9

F
-M

e
a
s
u

re

.02

.04

.06

.08

.10

.12

.14

.16

.18

Figure 1: F-Measure

Undersampling Ratio

0 1 2 3 4 5 6 7 8 9

P
re

c
is

io
n

.15

.20

.25

.30

.35

.40

.45

.50

.55

Figure 2: Precision

Undersampling Ratio

0 1 2 3 4 5 6 7 8 9

R
e
c
a
ll

.02

.04

.06

.08

.10

.12

Figure 3: Recall

3.4 Contribution of Coreference

For the sake of matching accuracy, the training of

distant learning relies on strict match of names.

When we actually fill slots for a given query, its

co-referred names in a single document can be

provided by a co-reference module. Our submitted

runs used the co-referred names of the query in

both the distantly trained classifiers and the simple

dependency pattern matcher which together

achieved P/R/F of 36.4/11.4/17.4 on the 2011

evaluation data. The use of co-reference is clearly

beneficial to our system; without using it the P/R/F

dropped to 28.8/10.0/14.3. Note that the results in

the three figures above were also obtained using

the coreference information.

4 Passage retrieval / QA

One further component incorporated into this

year‟s system was based on passage retrieval and

name typing. For each slot, a set of index terms is

generated using distant supervision (again, using

Freebase) and these terms are used to retrieve and

rank passages for a specific slot (Xu et al. 2011).

An answer is then selected based on name type and

distance from the query name. This is used as a

fall-back strategy, if the other answer extraction

components did not find any slot fill. Due to

limitations of time, this procedure was only

implemented for a few slots (employer and

headquarters location) and the constraints were not

tight enough to improve overall slot-filling

performance.

module

score using only module score excluding module

recall precision F1 recall precision F1

distant supervision overall 11.4 36.4 17.4 20.2 35.4 25.7

distant supervision classifier 10.0 37.9 15.4 21.1 34.5 26.2

distant supervision pattern matcher 2.0 28.6 3.6 24.7 35.7 29.2

alternate names 2.8 45.7 5.4 23.0 34.1 27.5

local patterns 14.4 41.0 21.3 18.5 33.4 23.8

implicit organization 0.6 5.5 1.1 25.0 39.2 30.5

functional nouns 0.5 23.8 1.0 25.1 35.3 29.3

bootstrapped linear patterns 3.5 54.1 6.6 24.8 34.6 28.9

bootstrapped dependency patterns 1.8 36.2 3.4 25.0 35.2 29.2

Table 5: Ablation Study of the System NYU2

5 Results

Because the passage/QA component was added at

the last minute, we thought it prudent to submit

one run with this component (NYU1) and one run

without (NYU2). It turned out (as just noted) that

this component was underconstrained. It added 35

slots fills, only two of which were correct; NYU2

had better performance:

Table 6: Performance of NYU Systems

Using NYU2 as a base, we then measured the

contribution of each module in isolation and the

performance of the system when each module was

removed in turn (ablation study).
2
 As one can see

from Table 5, the hand-coded local patterns by

themselves and the classifier trained by distant

supervision by itself provided quite good

performance. There is a lot of overlap between the

contributions of the different modules, but the

ablation study indicates that all modules made a

positive contribution to the final result except for

the implicit organization module, which had

satisfactory precision on the training data but very

poor precision on the test data.

Acknowledgments

Supported in part by the Intelligence Advanced

Research Projects Activity (IARPA) via Air Force

Research Laboratory (AFRL) contract number

FA8650-10-C-7058. The U.S. Government is

authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any

copyright annotation thereon. The views and

conclusions contained herein are those of the

authors and should not be interpreted as

2 Because the results of multiple modules are merged at the

end, removing one module may lead to the generation of a

new result (produced by a different module) – a result which

has not been assessed. Such responses are scored as incorrect

by the scoring program, though some may in fact be correct.

In consequence, the numbers in this table somewhat understate

the actual results.

necessarily representing the official policies or

endorsements, either expressed or implied, of

IARPA, AFRL, or the U.S. Government.

References

Zheng Chen, Suzanne Tamang, Adam Lee, Xiang Li,

Wen-Pin Lin, Javier Artiles, Matthew Snover,

Marissa Passantino and Heng Ji. 2010. CUNY-

BLENDER TAC-KBP2010 Entity Linking and Slot

Filling System Description. Proc. Text Analytics

Conference (TAC2010).

Ralph Grishman and Bonan Min. New York University

KBP 2010 Slot Filling System. Proceedings of Text

Analysis Conference 2010.

Mike Mintz, Steven Bills, Rion Snow and Dan Jurafsky.

2009. Distant supervision for relation extraction

without labeled data. Proceedings of ACL-IJCNLP

2009.

Ang Sun, Ralph Grishman and Satoshi Sekine. Semi-

supervised relation extraction with large-scale word

clustering. Proceedings of ACL 2011.

Wei Xu, Ralph Grishman and Le Zhao. 2011. Passage

retrieval for information extraction using distant

supervision. Proceedings of IJCNLP 2011.

 Recall Precision F1

NYU1 25.7 33.6 29.1

NYU2 25.5 35.0 29.5

