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Abstract 

This paper describes the New York 
University 2012 system for the KBP 
regular slot filling (SF) task. The NYU 
2012 SF system has a similar architecture 
to the NYU 2011 system. We improved our 
distant-supervision based slot-filling 
component with a few techniques including 
filtering errors by statistical measures 
collected from the source corpus, and 
relabeling erroneous training examples 
with a set of maximum entropy models and 
by applying bootstrapped/hand-coded 
patterns. We also augmented our query 
expansion procedure.  After the formal 
evaluation we experimented with models 
for estimating slot confidence.  We report 
on the impact of these changes. 

1. Introduction 

This paper describes the New York University 
2012 system for the Knowledge Base Population 
(KBP) regular slot filling (SF) task, part of the 
Text Analysis Conference (TAC) organized by 
NIST. The NYU 2012 KBP Slot-filling system has 
a similar architecture to our 2011 system. The 
system consists of several slot-filling components:  
two that use hand-coded patterns, another pattern-
based slot-filler in which the patterns are generated 
semi-automatically with a bootstrapping 
procedure, one based on name coreference, and a 
distant-supervision based slot filler. Significant 

improvements were made in the distant-
supervision based slot-filling component using a 
diverse range of techniques. In particular, we used 
statistics gathered from the source corpus to 
measure the quality of relation argument pairs and 
to remove noise, and applied a set of maximum 
entropy models and bootstrapped lexical and 
dependency path patterns to refine the labels for 
"distantly" matched training examples. 
 
 

 
Figure 1. System overview 



 

 
 

(a)  Overview of distant-supervision component          (b)  zoom-in view of the label refinement procedure 
 

Figure 2. Overview of NYU 2012 KBP slot filling component trained with distant supervision. a) shows 
the overview of distant-supervision based slot filling component,   b) shows the label refinement sub-
component, in particular the various techniques and how they interplay. 

 

2. Overview of NYU Slot-Filling System 

Like most KBP Slot-Filling systems, the NYU 
system starts by retrieving related documents based 
on a match to the query name or the result of query 
expansion.  It then uses a set of five extractors 
(including one extractor trained with distant 
supervision) operating in parallel on the retrieved 
documents to extract fillers.  The result is a set of 
intermediate slot fills, potentially highly 
redundant. Finally the system uses a combiner to 
validate answers and remove duplicates. Figure 1 
shows a highly simplified architecture of the NYU 
KBP slot filling system. We refer the readers to our 
2011 and 2010 system papers for more details (Sun 
et al. 2011, Grishman and Min 2010). 

The major changes in the NYU system for 2012 
involved improvements in distant supervision 
(described in section 3) and in query expansion 
(described in section 4).  A small change was made 
to add a regular expression for Government titles, 
such as “Acting Deputy Assistant Secretary of 
State”.  A component for finding organization 
names in context was removed; it had contributed 
negatively to our 2011 performance, and we didn’t 
forgive it for that transgression.  An ablation study 

of the contribution of the remaining components is 
given in section 5. 

Other minor changes were needed to track 
character offsets for fills and to report a confidence 
for each fill.  For the formal runs, the confidence 
was simply the average precision on the 2011 
evaluation of the extraction component which was 
responsible for the slot fill.  Subsequent to the 
2012 formal evaluation we began work on a more 
elaborate estimate of confidence;  this is described 
in section 6. 

3. Improved Distant Supervision 

The largest changes in the NYU 2012 system over 
the 2011 system are in the distant-supervision-
based slot-filling component. In this section, we 
first briefly review our distant-supervision-based 
slot filling component, and then describe the 
improvements in the NYU 2012 system. As usual, 
we refer the reader for any missing details of our 
slot-filling component to our 2011 system 
description paper (Sun et al, 2011). 

3.1. Distant Supervision 

The overall architecture is the same as the 
architecture of the NYU 2011 system, except that 
the label refinement procedure is replaced with a 



new subsystem which applies a diverse range of 
techniques for the refinement. The overall 
architecture is shown in the Figure 2(a). 
Training: Following the NYU 2011 system, the 
training procedure uses Freebase as the training 
source and the KBP source corpus as the unlabeled 
corpus for distant supervision. The same mapping 
table from Freebase to KBP slots is reused this 
year.  An offline training procedure processes all 
documents in the source corpus, enumerates all 
entity pairs that appear in the same sentence, and 
extracts them with their reference sentences as 
candidate relation mentions. A separate offline 
procedure runs the Stanford parser1 over the entire 
corpus to generate analyzed documents which 
contain part-of-speech tags, dependency parses, etc. 
These are used later on for extracting features. 
    The key step for distant supervision (Mintz et al. 
2009, Surdeanu et al. 2011) is to automatically label 
its training data using the training source 
(Freebase). We label a relation mention as positive 
if its argument pair appears in the related tables 
from Freebase, and we label the relation mention 
as negative if its argument pair < 𝑖, 𝑗 >  doesn’t 
appear in Freebase but some < 𝑖′, 𝑗 > or < 𝑖, 𝑗′ > 
appears in Freebase and 𝑖′ ≠ 𝑖 and 𝑗′ ≠ 𝑗. 
    After generating labeled examples, each 
example is represented with a diverse set of lexical, 
syntactic and semantic features (a detailed 
description and examples of features are in the 
NYU 2011 KBP system paper), and then a set of 
maximum entropy classifiers are trained and used 
as relation detection models. Because the distant 
labeling process generates an extremely 
unbalanced class distribution, we follow our last 
year’s practice: training a multi-class maximum 
entropy model for each pair of entity types, and 
down sampling the OTHER class to the same size 
as the positive class. 
 
Slot Filling runtime: During test time, the main 
NYU slot filling system reads in the queries, 
performs query expansion based on resources 
mined from Wikipedia redirect text, and then calls 
an IR engine (Lucene) to retrieve related 
documents, followed by deep linguistic analysis of 
the document using the NYU Jet system2 (part-of-
speech tagging, chunking, name tagging, 

                                                 
1 http://nlp.stanford.edu/software/lex-parser.shtml 
2 http://cs.nyu.edu/grishman/jet/license.html 

coreference resolution, etc.).  After these steps, a 
set of <query, candidate> pairs are passed to the 
distant filler along with the supporting sentences. 
Distant filler then performs feature extraction 
(using the same feature space as used at training 
time), and then classifies <query, candidate> pairs 
with the model trained offline.  Candidates that are 
classified as correct are emitted as an answer and 
sent back to the main NYU system for post 
processing. 
 
Problems with Distant Supervision: The 
heuristic labeling process of distant supervision 
generates noisy class labels which will hurt 
performance. This is particularly true when 
matching Freebase to a corpus consisting largely of 
news (Riedel et al. 2010 reported a 31% error rate 
when mapping Freebase to a New York Times 
corpus). There are two types of errors. First, a 
relation mention whose argument pair bears a 
certain relation (according to Freebase) doesn’t 
necessarily express the relation in its local context. 
For example, there is no org:founded_by relation 
expressed between the argument pair Bill Gates 
and Microsoft in the sentence Bill Gates has 
declared war on Microsoft’s insecure software. 
However, it is labeled as positive when consulting 
Freebase. Second, because Freebase is highly 
incomplete, the labeling process labels lots of 
relation mentions as negative when in fact there is 
contextual evidence that a relation exists between 
the pair of arguments. We will call the two types of 
errors false positive matches and false negative 
matches in the rest of the paper. 
 
Label Refinement:  Since the labeling process is 
known to generate false positive matches and false 
negative matches, the NYU 2011 system uses a 
few rules that correct the label of an example to the 
most frequent class its dependency path is 
associated with in the corpus (a more accurate and 
detailed description can be found in our system 
paper from last year). This year, we have improved 
it by applying a diverse range of techniques. In 
particular, we used statistics gathered from the 
source corpus to measure the corpus-dependent 
relatedness of KB entries (relation argument pairs) 
and to remove noise, applied a set of coarse-
grained maximum entropy models, trained on the 
examples generated by distant supervision, to 
relabel the noisy training instances, and used 



bootstrapped lexical/ dependency path patterns and 
hand coded patterns to refine the labels for 
"distantly" matched training examples. 

In the following few subsections, we describe a 
few improvements to refine the training data for 
our 2012 KBP slot filling sub-system. Figure 2(b) 
shows the specific refinement procedures and their 
relations in the NYU 2012 slot filling system.  

3.2. Pair Selection 

Freebase tables are not perfect. For example, 
<Linda, British> appears as an argument pair for 
per:origin. A common English first name such as 
Linda is ambiguous in terms of referring to a 
specific entity and is prone to causing false positive 
matches. Moreover, there is a gap between the 
sources of supervision (e.g., the tables in Freebase) 
and the reference corpus. It is not clear whether a 
pair of entities that bears a specific relation 

expresses that relation when the entities co-occur 
in a sentence in the source corpus. 
    We hypothesize that if a pair of entities co-occur 
more frequently in the same sentence (and co-
occur less frequently with other entities), they are 
more likely to be correlated, thus bearing a relation 
in this corpus. We define sentence-level Pointwise 
Mutual Information (PMI) as follows: 

 

𝑝𝑚𝑖𝑠𝑒𝑛𝑡 = 𝑙𝑜𝑔
𝐶𝑒1𝑒2 × 𝑁

∑ 𝐶𝑒1𝑒𝑖
𝑚
𝑖=1 × ∑ 𝐶𝑒𝑗𝑒2

𝑚
𝑗=1

 

 
in which m is the total number of entities, N is the 
total number of pairs of entities that appear in the 
same sentence, and 𝐶𝑒1𝑒2  is the count of co-
occurrences (in the same sentence) of a pair of 
entities 𝑒1and 𝑒2. 

 
Feature name Feature value description 

ETwDpath E21-E_ORGANIZATION-
poss-E_PERSON 

Conjunction of 1) order of argument, 2) entity types 
of arguments and 3) the dependence path in between 

ETwTpath E21-E_ORGANIZATION-
's-E_ PERSON 

Conjunction of 1) argument order, 2) entity types of 
arguments and 3) the lexical sequence in between 

Table 1. Features used in the coarse grained models for example <Bill Gates, Microsoft> as in the 
sentence Microsoft’s Bill Gates

 
Sentence-level PMI for each pair of entities in 

the training source (Freebase) is calculated based 
on the source corpus, and then is used to remove 
KB entries for which 𝑝𝑚𝑖𝑠𝑒𝑛𝑡  is less than a 
threshold. This gives a statistical measure of the 
extent a pair of entities in Freebase tables is related 
to each other. Despite its simplicity, we can see 
that this assigns <Linda, British> a score of -3.18, 
much less than the 13.3 assigned to another 
per:origin instance < Guujaaw, Haida>. 

In practice this filter should be used 
conservatively since otherwise it removes too 
many entries from the training source.  We use 
𝑝𝑚𝑖𝑠𝑒𝑛𝑡 = 1.0  as the threshold and removed 
around 10% of the training examples. On the 2011 
assessment queries, we observe improvements in 
both precision (from 20.1% to 22.1%) and recall 
(from12.6% to 13%), with an 0.9% (from 15.5% to 
16.4%) overall improvement in end-to-end F1 
score.  

3.3. Coarse-grained models for refinement 

The second addition to the label refinement 
pipeline is the use of a set of statistical models 
instead of a few rules for label refinement. The 
2011 NYU distant-supervision-based component 
relabels training examples to the most frequent 
type (if not the same) that their dependency-path 
patterns express in the automatically generated 
training dataset. We generalize the idea by first 
training a set of coarse-grained maximum entropy 
models on the automatically generated training 
dataset, then using it to relabel these automatically-
generated examples. The high-level intuition is 
that, by leveraging the data redundancy, the 
procedure appropriately weights features by their 
likelihood of appearing in relation instances for a 
particular relations, and in turn, these feature 
weights helps us to decide which instances are 
more likely to express the target relation. This 
procedure is able to correct both false positives 
matches and false negatives matches. The final 
distant-supervision-based relation detection model 



is trained with this new training set. Two types of 
features are used in the coarse-grained models: the 
entity type pair in conjunction with the dependency 
path between the 2 arguments and the order of 
arguments, and the entity type pair in conjunction 
with the lexical path in between and the order of 
arguments. An example of the features is shown in 
table 1. 
    We implemented this approach for relabeling 
training examples and tested it with 2011 data. 
Since this training/testing process makes use of the 
same data set which has a class imbalance 
problem, we trained a multi-class coarse-grained 
model for each pair of argument entity types and 
downsampled the OTHER class to be the same size 
as the rest combined, following the main distant-
learning training/testing scheme. The model-based 
relabeling technique significantly improves 
performance over the baseline model (the end-to-
end performance of the distant-supervision-based 
slot filler alone on 2011 assessment data has 
increased from 15.5% F1 to 22.3% F1). Using this 
refinement scheme alone also outperforms the 
refinement rules used in our 2011 system (F1 
increases from 20.7% to 22.3%). Table 2 shows 
the results when varying the threshold on the 
coarse-grained models for refinement. It shows 
that when the threshold is lowered, it correct more 
examples (by default the labels of other instances 
are kept unchanged), resulting in significant 
improvements in both precision and recall.  
 

 
Table 2. Performance of distant-supervision based 
slot filling component with different threshold 
when applying the coarse-grained model for label 
refinement. “anydoc” is turned on in the scorer. 

3.4. Patterns for refinement 

The third change is that we seek ways to better 
combine the several slot-filling components 
instead of just merging the answers they emit.  
Specifically, we apply the bootstrapped and hand-
coded patterns to correct the labels for “distantly” 
labeled examples that are used as the training 
source for the distant-supervision-based slot-filling 
component. This is based on the fact that our 
pattern-based slot-filling component has a higher 
precision than the distant-supervision based slot-
filling component. Specifically, we correct the 
labels of the “distantly” generated examples that 
match a pattern generated by the bootstrapping 
procedure to the type associated with the pattern. 
The bootstrapped patterns correct around 30k 
labels while the hand-coded rules correct around 1 
million labels. Overall, it improves overall F-
measure around 4% compared to the baseline 
model (R/P/F1 improved from 12.6/20.2/15.5 to 
17.2/25.6/20.6). 

3.5. Other changes 

Merge and re-divide similar slots. Observing that 
the 2 slots per:employee_of and per:member_of are 
very similar in their meanings, we treat them as the 
same class during the training and testing phase of 
distant learning, and we redivide them using a 
dictionary at the answer merging/validation phase. 
 
To summarize the changes and see their relative 
improvements in the distant supervision 
component over our 2011 system, we did separate 
experiments with each change and listed them in 
Table 3. 
 

 Precision Recall F1 
Baseline (BL) 20.2 12.6 15.5 
BL+model 26.5 19.3 22.3 
BL+PMI filter 22.1 13 16.4 
BL+patterns 25.6 17.2 20.6 
BL+all 31.2 18.7 23.4 
NYU 2011 DS 34.6 14.8 20.7 

Table 3. The performance with each improvement 
over baseline distant supervision. BL is the naïve 
distant supervision with only undersampling on the 
OTHER class. BL+model uses the coarse-grained 
model for relabeling training examples. BL+PMI 
filter uses PMI to filter pairs and BL+patterns 
uses bootstrapped and hand-coded patterns for 
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refinement. BL+all uses all three techniques 
(illustrated in figure 2b). We also compare to our 
distant supervision based filler last year (NYU 
2011 DS). “Anydoc” is turned on in the scorer. 
 
Table 3 shows that the model-based refinement 
scheme improves the performance the most, 
followed by the pattern-based approach, and then 
the filtering approach based on PMI. All three 
approaches have a positive impact on the 
performance. The final combined distant-
supervision-based slot-filling component has a F1 
score of 23.4, outperforming the component in our 
2011 system by 2.7 F1 score. 

4. Query Expansion 

Usually, it is not sufficient to retrieve all the 
documents related to the query by only using an 
exact match to the query’s name string. Hence, we 
have implemented several ways to expand the 
query names, which can help improve the recall 
score of our Slot Filling system. Moreover, if these 
expanded query names have been validated in the 
corpus, they can be directly reported as the 
responses for the per:alternate_names slot or 
org:alternate_names slot. A query name can be 
expanded in the following ways: 
 

1. If the query is an organization, the 
company suffixes can be dropped. For 
example, “Patterson-UTI Drilling” is 
considered as an alternate form of the 
query name “Patterson-UTI Drilling Co.”; 

2. If the query is a person with a middle 
initial, generate an alternate form by 
eliminating its middle initial(s); 

3. A redirect dictionary similar to the one in 
Chen et al. (2010) has been generated from 
the Wikipedia database. Wikipedia uses 
the redirect links to indicate the target 
pages that refer to the same entity. The 
redirects for a query are used as the 
expanded query names, which may 
provide several name variations, 
nicknames, acronyms, full name, or 
alternate names for a query name. For 
instance, the redirects “Parren James 
Mitchell” and “Parren J. Mitchell” are 
expanded query names for the person 
query name “Parren Mitchell”; the 

expanded names for the organization query 
name “Asian Development Bank” are 
“AsDB” and “Asia Development Bank” 
from this redirect dictionary. 
 

From the following table, we can observe that our 
strategies for query expansion have helped 
improve the recall score of our SF system by 
around 4%; the F1 score also increased by around 
4%, mainly benefiting from the recall 
enhancement. Steps 1 and 2 were included in prior 
NYU systems;  step 3 was added this year. 
 
 Precision Recall F1 
NYU1 w/o 
QE 

42.6 (46.6) 18.0 
(19.7) 

25.3 
(27.7) 

NYU1  
(step 1+2) 

43.1 (46.5) 18.5 
(20.0) 

25.8 
(27.9) 

NYU1  
(step 1+2+3) 

45.0 (47.0) 22.0 
(23.0) 

29.6 
(30.9) 

  
Table 4.  Effect of query expansion (QE).  The 
numbers in parentheses are the scores with 
“anydoc” turned on.3   

5. Results 

NYU submitted 2 runs: one (NYU1) with the 
distant supervision models trained with the 
enlarged 2012 source corpus and refinement 
schemes and the other (NYU2) with the model 
trained last year. The official performance is 
shown in the first two rows of the following table. 
The overall F1 for the two runs is essentially 
equivalent. In terms of component level 
performance, the DS model we used this year 
outperforms the 2011 DS model.  
 
 Precision Recall F1 
NYU1 45 22 29.6 
NYU2 48.9 21.2 29.6 
NYU1 DS 33.3 (41.7) 6.9 (8.6) 11.5(14.4) 
NYU2 DS 40.4 (50.8) 4.7(6) 8.5 (10.7) 

Table 5. Official results of NYU runs. The NYU1 
DS and NYU2 DS are the performance with the 
distant-supervision-based slot filler alone. The 

                                                 
3 anydoc is a feature of the scorer which accepts a slot fill in 
the system response as correct, regardless of the document 
cited in support of the fill, so long as the assessment file (key) 
marks this fill as correct for some document. 



numbers in parentheses are the scores with 
“anydoc” turned on. 
 
To understand the impact of different components, 
we did an ablation study on the components, 
running/removing the components one at a time, 
and show the scores in Table 6. It shows that all of 

our components have a positive impact on the final 
performance, with local patterns and distant 
supervision being the highest performing 
components. Each of these two components alone 
has a performance exceeding the median score of 
all submissions.  

 
Module Scoring using only module Scoring excluding module 

Precision Recall F1 Precision Recall F1 
Distant supervision 33.3 6.9 11.5 50 18.2 26.7 
Alternate names 38.8 2.6 4.8 46.5 20.2 28.2 
Local patterns 47.36 9.3 15.6 43.6 16.8 24.2 
Bootstrapped linear patterns 59.2 4.6 8.5 43.8 20 28 
Bootstrapped dependency patterns 54.8 3.7 6.9 43.1 19.9 27.2 
Functional nouns 55.7 2.2 4.2 44.4 20.5 28 

Table 6. Ablation study on NYU1 
 

6. Confidence Estimation 

6.1. Introduction 

One fundamental problem for Information 
Extraction systems, including slot filling, is 
evaluating the probability that the extracted 
information is correct. Many current KBP SF 
systems, including our own, consist of several 
independent extraction pipelines. The system 
combines the responses from each pipeline; if a 
confidence value can be associated with each 
response, it can help re-rank/combine the 
responses. For this purpose we require comparable 
confidence values from disparate machine learning 
models or different slot filling strategies. We have 
employed a simple but effective confidence 
estimation model to solve this challenge. This 
model can incorporate the local features, pipeline 
features and global features to approximate the 
confidence value for each response under a 
consistent and uniform standard. 

6.2. Framework 

This confidence estimation model mainly applies 
the following three general categories of features. 
Then it trains a Maximum Entropy model using 
these features and assigns the probability of the 
response being correct as the confidence value for 
that response. Three general categories of features 
are used: 
(1) Local Features: checks whether the supporting 
sentence contains both Query and Answer and also 
generates the dependency parse path related 
features; 
(2) Pipeline Features: indicates how well each 
pipeline, which provides the response, performed 
previously; 
(3) Global Features: detects how closely the Query 
and Answer are correlated in the global context.  
 
Each specific feature in the above categories is 
listed in Table 1. 
 

 
 

Feature 
Category 

Feature Description 

 
 
 

Local 
Features 

support_sent_contain_Q_A Checks whether S contains both original Q and 
A; 

support_sent_contain_ExQ_A Checks whether S contains both co-referred Q or 
expanded Q and A; 

shortest_dpath_length_Q_A The length of shortest dependency parse path 



between Q and A in S; 
Shortest_dpath_Q_A The shortest dependency parse path between Q 

and A in S; 
 

Pipeline 
Features 

slot_name The slot name; 
pipeline_name The name of pipeline which generates A; 
pipeline_precision The precision of the pipeline which generates A; 

 
 
 
 

Global 
Features 

query_retrieve_doc_num The number of documents retrieved by Q; 
answer_retrieve_doc_num The number of documents retrieved by A; 
co-occurrence_doc_num The number of documents retrieved by the co-

occurrences of Q and A; 
cond_prob_answer_givenQ The conditional probability of A given Q; 
cond_prob_query_givenA The conditional probability of Q given A; 
point-wise_mutual_info The Point-wise Mutual Information (PMI) of Q 

and A; 
Table 1. Features of Confidence Estimation Model.  

(Notation: Q -- query; A -- answer candidate; S -- supporting sentence.) 
 

6.3. Experiment 

To evaluate the reliability of confidence values 
generated by this model, we used the weighted 
voting method to investigate the relationship 
between the confidence values and the 
performance in Precision(P) / Recall(R) / F-
measure(F) scores. We trained this confidence 
estimation model using one year’s SF evaluation 
data, and then applied the model to estimate the 
confidence values for all the intermediate 
responses generated for another year’s data.  
 
Baseline voting system:  Both NYU1 and NYU2 
SF systems apply a basic voting system to combine 
all intermediate responses to generate the final 
response submission. This voting system simply 
counts the number of each response entity, which 
is a unique response tuple in the form  <Query_ID, 
Slot_Name, Response_Fill>, reported by all 
pipelines. For a single-valued slot of a query, the 
response with the highest count is returned as the 
final response fill. For the list-valued slots, all the 
intermediate responses extracted by the pipelines 
are returned as the final response fills. In this basic 
voting system, each response contributes equally.  
 
Weighted voting system:  Weighted voting is a 
voting system based on the idea that not all the 
voters contribute equally. Instead, voters have 
different weights concerning the outcome of an 
election. In our experiment, voters are all of 

responses generated by all pipelines, and the 
voters’ weights are the confidence values of those 
responses. We also set a threshold t in this 
weighted voting system, where those intermediate 
responses with confidence values that are lower 
than t would be eliminated. For each response 
entity, this weighted voting system simply sums all 
the weights (confidences) of the intermediate 
responses that support this response entity as the 
weights of this response entity. Then for a single-
valued slot of a query, it returns the response with 
the highest weights as the final response fill, while 
it returns all the responses as the final response 
fills for the list-valued slots. 

6.4. Results 

We first trained a confidence model on KBP2010 
SF evaluation data and generated confidence 
values for each intermediate response on KBP2011 
SF evaluation data. The above weighted voting 
system is applied to combine these intermediate 
responses with their confidence values. When the 
threshold t was set to 0, we found the scores of 
this weighted voting system result are 
0.310/0.317/0.313 in P/R/F, compared to the 
baseline voting system result 0.296/0.306/0.301. If 
we varied the threshold t, the best result was 
0.397/0.288/0.334 in P/R/F, which improved the 
baseline result by around 3% (absolute) in F-
measure.  

We then trained the confidence model on the 
2011 data and applied it to the 2012 data.  When 



we set confidence threshold t to 0, the P/R/F 
scores of the final responses produced by this 
weighted voting system are 0.473/0.231/0.311, 
compared to the P/R/F scores, 0.470/0.230/0.309, 
of NYU1 on KBP2012 SF data (where “anydoc” 
was turned on for both cases).  Raising the 
threshold did not yield any further improvement. 
The reasons why this weighted voting system 
performs much better on KBP2011 SF evaluation 
data than KBP2012 SF evaluation data still need to 
be investigated. 

Figure 3 summarizes the results of this weighted 
voting system with different confidence threshold 
settings. When the confidence threshold is raised, 
the precision score continuously increases to 1, and 
the recall score gradually decreases to 0.   
 

 
Figure 3. Impact of Confidence Threshold Settings 
 

In addition to improving overall performance, 
the confidence estimates can be used to convey to 
the user of slot-filling output our confidence in 
individual fills. We divided the range of 
confidence values (0 to 1) into 10 equal intervals 
(0 to 0.1, 0.1 to 0.2, etc.), and then categorized the 
intermediate responses by their confidence value. 
Then for each category, the intermediate responses 
are combined by the above weighted voting 
system, and the final response fills are scored in 
Precision score. Figure 4 shows the main tendency 
for the responses with higher confidence to 
generate more precise answers, indirectly 
validating the reliability of the confidence values. 
 

 
Figure 4. Performance of responses in each 
confidence interval. 

7. Conclusion 

This paper describes the NYU 2012 system for the 
KBP slot filling task. We have improved our 
distant-supervision-based slot-filling component 
with several novel techniques. Results show 
improvement over our distant-supervision-based 
slot-filling sub-system last year. We augmented 
query expansion, which substantially improved this 
year’s performance.  We analyzed the NYU runs 
this year, and presented an ablation study to 
understand the impact of each component and their 
relative contribution to the final system.  Finally, 
we created a preliminary model for estimating our 
confidence in slot fills and showed its correlation 
with precision;  further experiments are planned to 
investigate more elaborate models. 
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