
New York University 2012 System for KBP Slot Filling

Bonan Min Xiang Li Ralph Grishman Ang Sun
Computer Science Department Intelius

New York University 500 108th Ave NE Suite 2200
Bellevue, WA 98004

New York, NY 10003 (work done at New York Univ.)

{min xiangli grishman}@cs.nyu.edu asun@intelius.com

Abstract

This paper describes the New York
University 2012 system for the KBP
regular slot filling (SF) task. The NYU
2012 SF system has a similar architecture
to the NYU 2011 system. We improved our
distant-supervision based slot-filling
component with a few techniques including
filtering errors by statistical measures
collected from the source corpus, and
relabeling erroneous training examples
with a set of maximum entropy models and
by applying bootstrapped/hand-coded
patterns. We also augmented our query
expansion procedure. After the formal
evaluation we experimented with models
for estimating slot confidence. We report
on the impact of these changes.

1. Introduction

This paper describes the New York University
2012 system for the Knowledge Base Population
(KBP) regular slot filling (SF) task, part of the
Text Analysis Conference (TAC) organized by
NIST. The NYU 2012 KBP Slot-filling system has
a similar architecture to our 2011 system. The
system consists of several slot-filling components:
two that use hand-coded patterns, another pattern-
based slot-filler in which the patterns are generated
semi-automatically with a bootstrapping
procedure, one based on name coreference, and a
distant-supervision based slot filler. Significant

improvements were made in the distant-
supervision based slot-filling component using a
diverse range of techniques. In particular, we used
statistics gathered from the source corpus to
measure the quality of relation argument pairs and
to remove noise, and applied a set of maximum
entropy models and bootstrapped lexical and
dependency path patterns to refine the labels for
"distantly" matched training examples.

Figure 1. System overview

(a) Overview of distant-supervision component (b) zoom-in view of the label refinement procedure

Figure 2. Overview of NYU 2012 KBP slot filling component trained with distant supervision. a) shows
the overview of distant-supervision based slot filling component, b) shows the label refinement sub-
component, in particular the various techniques and how they interplay.

2. Overview of NYU Slot-Filling System

Like most KBP Slot-Filling systems, the NYU
system starts by retrieving related documents based
on a match to the query name or the result of query
expansion. It then uses a set of five extractors
(including one extractor trained with distant
supervision) operating in parallel on the retrieved
documents to extract fillers. The result is a set of
intermediate slot fills, potentially highly
redundant. Finally the system uses a combiner to
validate answers and remove duplicates. Figure 1
shows a highly simplified architecture of the NYU
KBP slot filling system. We refer the readers to our
2011 and 2010 system papers for more details (Sun
et al. 2011, Grishman and Min 2010).

The major changes in the NYU system for 2012
involved improvements in distant supervision
(described in section 3) and in query expansion
(described in section 4). A small change was made
to add a regular expression for Government titles,
such as “Acting Deputy Assistant Secretary of
State”. A component for finding organization
names in context was removed; it had contributed
negatively to our 2011 performance, and we didn’t
forgive it for that transgression. An ablation study

of the contribution of the remaining components is
given in section 5.

Other minor changes were needed to track
character offsets for fills and to report a confidence
for each fill. For the formal runs, the confidence
was simply the average precision on the 2011
evaluation of the extraction component which was
responsible for the slot fill. Subsequent to the
2012 formal evaluation we began work on a more
elaborate estimate of confidence; this is described
in section 6.

3. Improved Distant Supervision

The largest changes in the NYU 2012 system over
the 2011 system are in the distant-supervision-
based slot-filling component. In this section, we
first briefly review our distant-supervision-based
slot filling component, and then describe the
improvements in the NYU 2012 system. As usual,
we refer the reader for any missing details of our
slot-filling component to our 2011 system
description paper (Sun et al, 2011).

3.1. Distant Supervision

The overall architecture is the same as the
architecture of the NYU 2011 system, except that
the label refinement procedure is replaced with a

new subsystem which applies a diverse range of
techniques for the refinement. The overall
architecture is shown in the Figure 2(a).
Training: Following the NYU 2011 system, the
training procedure uses Freebase as the training
source and the KBP source corpus as the unlabeled
corpus for distant supervision. The same mapping
table from Freebase to KBP slots is reused this
year. An offline training procedure processes all
documents in the source corpus, enumerates all
entity pairs that appear in the same sentence, and
extracts them with their reference sentences as
candidate relation mentions. A separate offline
procedure runs the Stanford parser1 over the entire
corpus to generate analyzed documents which
contain part-of-speech tags, dependency parses, etc.
These are used later on for extracting features.
 The key step for distant supervision (Mintz et al.
2009, Surdeanu et al. 2011) is to automatically label
its training data using the training source
(Freebase). We label a relation mention as positive
if its argument pair appears in the related tables
from Freebase, and we label the relation mention
as negative if its argument pair < 𝑖, 𝑗 > doesn’t
appear in Freebase but some < 𝑖′, 𝑗 > or < 𝑖, 𝑗′ >
appears in Freebase and 𝑖′ ≠ 𝑖 and 𝑗′ ≠ 𝑗.
 After generating labeled examples, each
example is represented with a diverse set of lexical,
syntactic and semantic features (a detailed
description and examples of features are in the
NYU 2011 KBP system paper), and then a set of
maximum entropy classifiers are trained and used
as relation detection models. Because the distant
labeling process generates an extremely
unbalanced class distribution, we follow our last
year’s practice: training a multi-class maximum
entropy model for each pair of entity types, and
down sampling the OTHER class to the same size
as the positive class.

Slot Filling runtime: During test time, the main
NYU slot filling system reads in the queries,
performs query expansion based on resources
mined from Wikipedia redirect text, and then calls
an IR engine (Lucene) to retrieve related
documents, followed by deep linguistic analysis of
the document using the NYU Jet system2 (part-of-
speech tagging, chunking, name tagging,

1 http://nlp.stanford.edu/software/lex-parser.shtml
2 http://cs.nyu.edu/grishman/jet/license.html

coreference resolution, etc.). After these steps, a
set of <query, candidate> pairs are passed to the
distant filler along with the supporting sentences.
Distant filler then performs feature extraction
(using the same feature space as used at training
time), and then classifies <query, candidate> pairs
with the model trained offline. Candidates that are
classified as correct are emitted as an answer and
sent back to the main NYU system for post
processing.

Problems with Distant Supervision: The
heuristic labeling process of distant supervision
generates noisy class labels which will hurt
performance. This is particularly true when
matching Freebase to a corpus consisting largely of
news (Riedel et al. 2010 reported a 31% error rate
when mapping Freebase to a New York Times
corpus). There are two types of errors. First, a
relation mention whose argument pair bears a
certain relation (according to Freebase) doesn’t
necessarily express the relation in its local context.
For example, there is no org:founded_by relation
expressed between the argument pair Bill Gates
and Microsoft in the sentence Bill Gates has
declared war on Microsoft’s insecure software.
However, it is labeled as positive when consulting
Freebase. Second, because Freebase is highly
incomplete, the labeling process labels lots of
relation mentions as negative when in fact there is
contextual evidence that a relation exists between
the pair of arguments. We will call the two types of
errors false positive matches and false negative
matches in the rest of the paper.

Label Refinement: Since the labeling process is
known to generate false positive matches and false
negative matches, the NYU 2011 system uses a
few rules that correct the label of an example to the
most frequent class its dependency path is
associated with in the corpus (a more accurate and
detailed description can be found in our system
paper from last year). This year, we have improved
it by applying a diverse range of techniques. In
particular, we used statistics gathered from the
source corpus to measure the corpus-dependent
relatedness of KB entries (relation argument pairs)
and to remove noise, applied a set of coarse-
grained maximum entropy models, trained on the
examples generated by distant supervision, to
relabel the noisy training instances, and used

bootstrapped lexical/ dependency path patterns and
hand coded patterns to refine the labels for
"distantly" matched training examples.

In the following few subsections, we describe a
few improvements to refine the training data for
our 2012 KBP slot filling sub-system. Figure 2(b)
shows the specific refinement procedures and their
relations in the NYU 2012 slot filling system.

3.2. Pair Selection

Freebase tables are not perfect. For example,
<Linda, British> appears as an argument pair for
per:origin. A common English first name such as
Linda is ambiguous in terms of referring to a
specific entity and is prone to causing false positive
matches. Moreover, there is a gap between the
sources of supervision (e.g., the tables in Freebase)
and the reference corpus. It is not clear whether a
pair of entities that bears a specific relation

expresses that relation when the entities co-occur
in a sentence in the source corpus.
 We hypothesize that if a pair of entities co-occur
more frequently in the same sentence (and co-
occur less frequently with other entities), they are
more likely to be correlated, thus bearing a relation
in this corpus. We define sentence-level Pointwise
Mutual Information (PMI) as follows:

𝑝𝑚𝑖𝑠𝑒𝑛𝑡 = 𝑙𝑜𝑔
𝐶𝑒1𝑒2 × 𝑁

∑ 𝐶𝑒1𝑒𝑖
𝑚
𝑖=1 × ∑ 𝐶𝑒𝑗𝑒2

𝑚
𝑗=1

in which m is the total number of entities, N is the
total number of pairs of entities that appear in the
same sentence, and 𝐶𝑒1𝑒2 is the count of co-
occurrences (in the same sentence) of a pair of
entities 𝑒1and 𝑒2.

Feature name Feature value description

ETwDpath E21-E_ORGANIZATION-
poss-E_PERSON

Conjunction of 1) order of argument, 2) entity types
of arguments and 3) the dependence path in between

ETwTpath E21-E_ORGANIZATION-
's-E_ PERSON

Conjunction of 1) argument order, 2) entity types of
arguments and 3) the lexical sequence in between

Table 1. Features used in the coarse grained models for example <Bill Gates, Microsoft> as in the
sentence Microsoft’s Bill Gates

Sentence-level PMI for each pair of entities in

the training source (Freebase) is calculated based
on the source corpus, and then is used to remove
KB entries for which 𝑝𝑚𝑖𝑠𝑒𝑛𝑡 is less than a
threshold. This gives a statistical measure of the
extent a pair of entities in Freebase tables is related
to each other. Despite its simplicity, we can see
that this assigns <Linda, British> a score of -3.18,
much less than the 13.3 assigned to another
per:origin instance < Guujaaw, Haida>.

In practice this filter should be used
conservatively since otherwise it removes too
many entries from the training source. We use
𝑝𝑚𝑖𝑠𝑒𝑛𝑡 = 1.0 as the threshold and removed
around 10% of the training examples. On the 2011
assessment queries, we observe improvements in
both precision (from 20.1% to 22.1%) and recall
(from12.6% to 13%), with an 0.9% (from 15.5% to
16.4%) overall improvement in end-to-end F1
score.

3.3. Coarse-grained models for refinement

The second addition to the label refinement
pipeline is the use of a set of statistical models
instead of a few rules for label refinement. The
2011 NYU distant-supervision-based component
relabels training examples to the most frequent
type (if not the same) that their dependency-path
patterns express in the automatically generated
training dataset. We generalize the idea by first
training a set of coarse-grained maximum entropy
models on the automatically generated training
dataset, then using it to relabel these automatically-
generated examples. The high-level intuition is
that, by leveraging the data redundancy, the
procedure appropriately weights features by their
likelihood of appearing in relation instances for a
particular relations, and in turn, these feature
weights helps us to decide which instances are
more likely to express the target relation. This
procedure is able to correct both false positives
matches and false negatives matches. The final
distant-supervision-based relation detection model

is trained with this new training set. Two types of
features are used in the coarse-grained models: the
entity type pair in conjunction with the dependency
path between the 2 arguments and the order of
arguments, and the entity type pair in conjunction
with the lexical path in between and the order of
arguments. An example of the features is shown in
table 1.
 We implemented this approach for relabeling
training examples and tested it with 2011 data.
Since this training/testing process makes use of the
same data set which has a class imbalance
problem, we trained a multi-class coarse-grained
model for each pair of argument entity types and
downsampled the OTHER class to be the same size
as the rest combined, following the main distant-
learning training/testing scheme. The model-based
relabeling technique significantly improves
performance over the baseline model (the end-to-
end performance of the distant-supervision-based
slot filler alone on 2011 assessment data has
increased from 15.5% F1 to 22.3% F1). Using this
refinement scheme alone also outperforms the
refinement rules used in our 2011 system (F1
increases from 20.7% to 22.3%). Table 2 shows
the results when varying the threshold on the
coarse-grained models for refinement. It shows
that when the threshold is lowered, it correct more
examples (by default the labels of other instances
are kept unchanged), resulting in significant
improvements in both precision and recall.

Table 2. Performance of distant-supervision based
slot filling component with different threshold
when applying the coarse-grained model for label
refinement. “anydoc” is turned on in the scorer.

3.4. Patterns for refinement

The third change is that we seek ways to better
combine the several slot-filling components
instead of just merging the answers they emit.
Specifically, we apply the bootstrapped and hand-
coded patterns to correct the labels for “distantly”
labeled examples that are used as the training
source for the distant-supervision-based slot-filling
component. This is based on the fact that our
pattern-based slot-filling component has a higher
precision than the distant-supervision based slot-
filling component. Specifically, we correct the
labels of the “distantly” generated examples that
match a pattern generated by the bootstrapping
procedure to the type associated with the pattern.
The bootstrapped patterns correct around 30k
labels while the hand-coded rules correct around 1
million labels. Overall, it improves overall F-
measure around 4% compared to the baseline
model (R/P/F1 improved from 12.6/20.2/15.5 to
17.2/25.6/20.6).

3.5. Other changes

Merge and re-divide similar slots. Observing that
the 2 slots per:employee_of and per:member_of are
very similar in their meanings, we treat them as the
same class during the training and testing phase of
distant learning, and we redivide them using a
dictionary at the answer merging/validation phase.

To summarize the changes and see their relative
improvements in the distant supervision
component over our 2011 system, we did separate
experiments with each change and listed them in
Table 3.

 Precision Recall F1
Baseline (BL) 20.2 12.6 15.5
BL+model 26.5 19.3 22.3
BL+PMI filter 22.1 13 16.4
BL+patterns 25.6 17.2 20.6
BL+all 31.2 18.7 23.4
NYU 2011 DS 34.6 14.8 20.7

Table 3. The performance with each improvement
over baseline distant supervision. BL is the naïve
distant supervision with only undersampling on the
OTHER class. BL+model uses the coarse-grained
model for relabeling training examples. BL+PMI
filter uses PMI to filter pairs and BL+patterns
uses bootstrapped and hand-coded patterns for

0

0.05

0.1

0.15

0.2

0.25

0.3

1 0.9 0.8 0.7 0.6 0.5

Recall Precision F1

refinement. BL+all uses all three techniques
(illustrated in figure 2b). We also compare to our
distant supervision based filler last year (NYU
2011 DS). “Anydoc” is turned on in the scorer.

Table 3 shows that the model-based refinement
scheme improves the performance the most,
followed by the pattern-based approach, and then
the filtering approach based on PMI. All three
approaches have a positive impact on the
performance. The final combined distant-
supervision-based slot-filling component has a F1
score of 23.4, outperforming the component in our
2011 system by 2.7 F1 score.

4. Query Expansion

Usually, it is not sufficient to retrieve all the
documents related to the query by only using an
exact match to the query’s name string. Hence, we
have implemented several ways to expand the
query names, which can help improve the recall
score of our Slot Filling system. Moreover, if these
expanded query names have been validated in the
corpus, they can be directly reported as the
responses for the per:alternate_names slot or
org:alternate_names slot. A query name can be
expanded in the following ways:

1. If the query is an organization, the
company suffixes can be dropped. For
example, “Patterson-UTI Drilling” is
considered as an alternate form of the
query name “Patterson-UTI Drilling Co.”;

2. If the query is a person with a middle
initial, generate an alternate form by
eliminating its middle initial(s);

3. A redirect dictionary similar to the one in
Chen et al. (2010) has been generated from
the Wikipedia database. Wikipedia uses
the redirect links to indicate the target
pages that refer to the same entity. The
redirects for a query are used as the
expanded query names, which may
provide several name variations,
nicknames, acronyms, full name, or
alternate names for a query name. For
instance, the redirects “Parren James
Mitchell” and “Parren J. Mitchell” are
expanded query names for the person
query name “Parren Mitchell”; the

expanded names for the organization query
name “Asian Development Bank” are
“AsDB” and “Asia Development Bank”
from this redirect dictionary.

From the following table, we can observe that our
strategies for query expansion have helped
improve the recall score of our SF system by
around 4%; the F1 score also increased by around
4%, mainly benefiting from the recall
enhancement. Steps 1 and 2 were included in prior
NYU systems; step 3 was added this year.

 Precision Recall F1
NYU1 w/o
QE

42.6 (46.6) 18.0
(19.7)

25.3
(27.7)

NYU1
(step 1+2)

43.1 (46.5) 18.5
(20.0)

25.8
(27.9)

NYU1
(step 1+2+3)

45.0 (47.0) 22.0
(23.0)

29.6
(30.9)

Table 4. Effect of query expansion (QE). The
numbers in parentheses are the scores with
“anydoc” turned on.3

5. Results

NYU submitted 2 runs: one (NYU1) with the
distant supervision models trained with the
enlarged 2012 source corpus and refinement
schemes and the other (NYU2) with the model
trained last year. The official performance is
shown in the first two rows of the following table.
The overall F1 for the two runs is essentially
equivalent. In terms of component level
performance, the DS model we used this year
outperforms the 2011 DS model.

 Precision Recall F1
NYU1 45 22 29.6
NYU2 48.9 21.2 29.6
NYU1 DS 33.3 (41.7) 6.9 (8.6) 11.5(14.4)
NYU2 DS 40.4 (50.8) 4.7(6) 8.5 (10.7)

Table 5. Official results of NYU runs. The NYU1
DS and NYU2 DS are the performance with the
distant-supervision-based slot filler alone. The

3 anydoc is a feature of the scorer which accepts a slot fill in
the system response as correct, regardless of the document
cited in support of the fill, so long as the assessment file (key)
marks this fill as correct for some document.

numbers in parentheses are the scores with
“anydoc” turned on.

To understand the impact of different components,
we did an ablation study on the components,
running/removing the components one at a time,
and show the scores in Table 6. It shows that all of

our components have a positive impact on the final
performance, with local patterns and distant
supervision being the highest performing
components. Each of these two components alone
has a performance exceeding the median score of
all submissions.

Module Scoring using only module Scoring excluding module

Precision Recall F1 Precision Recall F1
Distant supervision 33.3 6.9 11.5 50 18.2 26.7
Alternate names 38.8 2.6 4.8 46.5 20.2 28.2
Local patterns 47.36 9.3 15.6 43.6 16.8 24.2
Bootstrapped linear patterns 59.2 4.6 8.5 43.8 20 28
Bootstrapped dependency patterns 54.8 3.7 6.9 43.1 19.9 27.2
Functional nouns 55.7 2.2 4.2 44.4 20.5 28

Table 6. Ablation study on NYU1

6. Confidence Estimation

6.1. Introduction

One fundamental problem for Information
Extraction systems, including slot filling, is
evaluating the probability that the extracted
information is correct. Many current KBP SF
systems, including our own, consist of several
independent extraction pipelines. The system
combines the responses from each pipeline; if a
confidence value can be associated with each
response, it can help re-rank/combine the
responses. For this purpose we require comparable
confidence values from disparate machine learning
models or different slot filling strategies. We have
employed a simple but effective confidence
estimation model to solve this challenge. This
model can incorporate the local features, pipeline
features and global features to approximate the
confidence value for each response under a
consistent and uniform standard.

6.2. Framework

This confidence estimation model mainly applies
the following three general categories of features.
Then it trains a Maximum Entropy model using
these features and assigns the probability of the
response being correct as the confidence value for
that response. Three general categories of features
are used:
(1) Local Features: checks whether the supporting
sentence contains both Query and Answer and also
generates the dependency parse path related
features;
(2) Pipeline Features: indicates how well each
pipeline, which provides the response, performed
previously;
(3) Global Features: detects how closely the Query
and Answer are correlated in the global context.

Each specific feature in the above categories is
listed in Table 1.

Feature
Category

Feature Description

Local
Features

support_sent_contain_Q_A Checks whether S contains both original Q and
A;

support_sent_contain_ExQ_A Checks whether S contains both co-referred Q or
expanded Q and A;

shortest_dpath_length_Q_A The length of shortest dependency parse path

between Q and A in S;
Shortest_dpath_Q_A The shortest dependency parse path between Q

and A in S;

Pipeline
Features

slot_name The slot name;
pipeline_name The name of pipeline which generates A;
pipeline_precision The precision of the pipeline which generates A;

Global
Features

query_retrieve_doc_num The number of documents retrieved by Q;
answer_retrieve_doc_num The number of documents retrieved by A;
co-occurrence_doc_num The number of documents retrieved by the co-

occurrences of Q and A;
cond_prob_answer_givenQ The conditional probability of A given Q;
cond_prob_query_givenA The conditional probability of Q given A;
point-wise_mutual_info The Point-wise Mutual Information (PMI) of Q

and A;
Table 1. Features of Confidence Estimation Model.

(Notation: Q -- query; A -- answer candidate; S -- supporting sentence.)

6.3. Experiment

To evaluate the reliability of confidence values
generated by this model, we used the weighted
voting method to investigate the relationship
between the confidence values and the
performance in Precision(P) / Recall(R) / F-
measure(F) scores. We trained this confidence
estimation model using one year’s SF evaluation
data, and then applied the model to estimate the
confidence values for all the intermediate
responses generated for another year’s data.

Baseline voting system: Both NYU1 and NYU2
SF systems apply a basic voting system to combine
all intermediate responses to generate the final
response submission. This voting system simply
counts the number of each response entity, which
is a unique response tuple in the form <Query_ID,
Slot_Name, Response_Fill>, reported by all
pipelines. For a single-valued slot of a query, the
response with the highest count is returned as the
final response fill. For the list-valued slots, all the
intermediate responses extracted by the pipelines
are returned as the final response fills. In this basic
voting system, each response contributes equally.

Weighted voting system: Weighted voting is a
voting system based on the idea that not all the
voters contribute equally. Instead, voters have
different weights concerning the outcome of an
election. In our experiment, voters are all of

responses generated by all pipelines, and the
voters’ weights are the confidence values of those
responses. We also set a threshold t in this
weighted voting system, where those intermediate
responses with confidence values that are lower
than t would be eliminated. For each response
entity, this weighted voting system simply sums all
the weights (confidences) of the intermediate
responses that support this response entity as the
weights of this response entity. Then for a single-
valued slot of a query, it returns the response with
the highest weights as the final response fill, while
it returns all the responses as the final response
fills for the list-valued slots.

6.4. Results

We first trained a confidence model on KBP2010
SF evaluation data and generated confidence
values for each intermediate response on KBP2011
SF evaluation data. The above weighted voting
system is applied to combine these intermediate
responses with their confidence values. When the
threshold t was set to 0, we found the scores of
this weighted voting system result are
0.310/0.317/0.313 in P/R/F, compared to the
baseline voting system result 0.296/0.306/0.301. If
we varied the threshold t, the best result was
0.397/0.288/0.334 in P/R/F, which improved the
baseline result by around 3% (absolute) in F-
measure.

We then trained the confidence model on the
2011 data and applied it to the 2012 data. When

we set confidence threshold t to 0, the P/R/F
scores of the final responses produced by this
weighted voting system are 0.473/0.231/0.311,
compared to the P/R/F scores, 0.470/0.230/0.309,
of NYU1 on KBP2012 SF data (where “anydoc”
was turned on for both cases). Raising the
threshold did not yield any further improvement.
The reasons why this weighted voting system
performs much better on KBP2011 SF evaluation
data than KBP2012 SF evaluation data still need to
be investigated.

Figure 3 summarizes the results of this weighted
voting system with different confidence threshold
settings. When the confidence threshold is raised,
the precision score continuously increases to 1, and
the recall score gradually decreases to 0.

Figure 3. Impact of Confidence Threshold Settings

In addition to improving overall performance,
the confidence estimates can be used to convey to
the user of slot-filling output our confidence in
individual fills. We divided the range of
confidence values (0 to 1) into 10 equal intervals
(0 to 0.1, 0.1 to 0.2, etc.), and then categorized the
intermediate responses by their confidence value.
Then for each category, the intermediate responses
are combined by the above weighted voting
system, and the final response fills are scored in
Precision score. Figure 4 shows the main tendency
for the responses with higher confidence to
generate more precise answers, indirectly
validating the reliability of the confidence values.

Figure 4. Performance of responses in each
confidence interval.

7. Conclusion

This paper describes the NYU 2012 system for the
KBP slot filling task. We have improved our
distant-supervision-based slot-filling component
with several novel techniques. Results show
improvement over our distant-supervision-based
slot-filling sub-system last year. We augmented
query expansion, which substantially improved this
year’s performance. We analyzed the NYU runs
this year, and presented an ablation study to
understand the impact of each component and their
relative contribution to the final system. Finally,
we created a preliminary model for estimating our
confidence in slot fills and showed its correlation
with precision; further experiments are planned to
investigate more elaborate models.

Acknowledgments
Supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via
Department of Interior National Business Center
contract number D11PC20154. The U.S.
Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies or
endorsements, either expressed or implied, of
IARPA, DoI/NBC, or the U.S. Government.

References
Zheng Chen, Suzanne Tamang, Adam Lee, Xiang

Li, Wen-Pin Lin, Javier Artiles, Matthew
Snover, Marissa Passantino and Heng Ji. 2010.
CUNY- BLENDER TAC-KBP 2010 Entity
Linking and Slot Filling System Description.
Proceedings of Text Analysis Conference 2010.

Ralph Grishman and Bonan Min. 2010. New York
University KBP 2010 Slot Filling System.
Proceedings of Text Analysis Conference 2010.

Mihai Surdeanu, Sonal Gupta, John Bauer, David
McClosky, Angel X. Chang, Valentin I. Spitkovsky,
and Christopher D. Manning. 2011. Stanford’s
distantly supervised slot-filling system. Proceedings
of the Text Analytics Conference 2011.

Mike Mintz, Steven Bills, Rion Snow and Dan Jurafsky.
2009. Distant supervision for relation extraction
without labeled data. Proceedings of ACL-IJCNLP
2009.

Sebastian Riedel, Limin Yao and Andrew
McCallum. 2010. Modeling Relations and Their
Mentions without Labeled Text. Proceedings of
ECML/PKDD 2010.

Ang Sun, Ralph Grishman, Wei Xu and Bonan Min.
2011. New York University 2011 System for KBP
Slot Filling. In Proceedings of Text Analysis
Conference 2011.

http://www.cs.umass.edu/~lmyao/papers/riedel10modeling.pdf
http://www.cs.umass.edu/~lmyao/papers/riedel10modeling.pdf

