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ABSTRACT

Named entity recognition is fundamental to information extrac-
tion, knowledge base construction and many other tasks. Trained
on annotated newswire documents, state-of-the-art sentence-level
taggers do not perform well on newer documents nor informal text
such that found on discussion fora. Frequently, names are missed
due to insufficient context. We hypothesize that finding them ben-
efits from using the context of the same string in other sentences
within the document. We propose a simple joint decoding algorithm
which enforces document-level tag consistency on top of sentence-
level tagging decisions. Experiments on the challenging TAC-KBP
Cold Start Entity Discovery dataset show that the proposed method
improves performance in both news and discussion forum text,
across all three entity types. End-to-end entity clustering is also
improved because of more names found.

1 INTRODUCTION

Named Entity Recognition (NER) is a fundamental component in
applications such as answering questions and web search. Named
entities also serve as inputs to downstream Information Extrac-
tion (IE) algorithms such as relation detection, entity linking and
knowledge base construction.

Despite extensive research in NER, the accuracy of state-of-the-
art name taggers degrades on informal genres (e.g. discussion fo-
rum) and on more recent articles [15]. Name taggers age [24]-
trained with news articles published years ago, name taggers see
far more unrecognized words when presented with today’s news.
Frequently, there aren’t sufficient context to identify names in in-
formal text (e.g. online posts, or all-capitalized text) L.

State-of-the-art name taggers are sequence tagging models such
as CRF [17] and bidirectional LSTMs with an additional CRF layer
layer [18]. Trained with labeled datasets, a name tagger decodes
a sequence of tags for each sentence independent of the other
sentences. While they model local context (e.g. previous and next
words) within the sentence, they do not model shared information
across the document. The scheme fails to recognize names if there
aren’t strong clues from surface forms nor context. Here are a few
motivating examples ? from New York Times and discussion forum
posts in the 2015 TAC-KBP 3 evaluation dataset:

Example 1: new names
S1: SpaceX Completes First Mission...
Sa: Space Exploration Technologies (SpaceX) successfully completed

Some titles aren’t full sentences. For example, 40 Minutes With Kellyanne Conway.
2We show the names that are missed by our strong sequence tagging model in bold,
and show the reference name that are tagged correctly with underline.
3https://tac.nist.gov/2015/KBP/
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its first ... mission

A previously-unseen ORG SpaceX is missed in S; because con-
text is ambiguous for recognizing it and typing it as an ORG.

Example 2: informal text or confusing capitalization
S1 (question): Any tripsters in the area?

Sz (replyl): syracuse here

Ss3 (reply2): ...visit Syracuse to ...

Sy (title): RBS TO SPLIT OFF $61 BILLION IN LOANS INTO INTER-
NAL BAD BANK’
Sz: Shares in RBS closed down 7.5 percent

In the example above, the uncapitalized syracuse in the first Sy
is a missed GPE, but the following S3 provides more context and
the capitalized string is correctly tagged. We see a similar pattern
for the acronym RBS.

Example 3: nested GPE

S1: No, i’m leaving boston tomorrow.

Sz: those on the boston pd who aren’t working, probably will be
protesting...

Recent work in NER has attempted to find name-internal names [7].
Frequently, GPEs are nested in another name (especially ORGs lo-
cated in the GPE). Here boston pd (Boston Police Department) is a
GPE boston inside an ORG. Seeing both strings offers more confi-
dence for tagging the nested GPE name.

These examples show that more context of the name strings from
the rest of the document is extremely helpful for tagging difficult
names. It is orthogonal to the information captured by the local
sentence-level tagger. Inspired by one-sense-per-discourse [9], we
propose one-sense-per-document (a.k.a., assuming all mentions of
each name string to have the same tag sequence). We propose an
algorithm which finds all the above-mentioned missing names and
improves over a strong sequence-tagging model significantly. Our
contributions are three-fold:

e An algorithm that combines a sentence-level sequence tagger
and a document-level name-string-based tagger to enforce
tag consistency.

e Demonstrated improvements on NER in the challenging
TAC-KBP Cold Start Entity Discovery dataset.

e Improved name finding resulting in improvements on the
entity clustering task.



We will first describe related work, then the algorithm in details.
We will present experimental results and conclusion in the end.

2 RELATED WORK

Named Entity Recognition (NER) was introduced as a separate
task in Message Understanding Conference - 6 [11], and has been
advanced through evaluations such as ACE [13], CoNLL [28, 29]
and TAC [15]. NER has been studied extensively [26]. Notable
supervised models for NER include: HMM (3, 6], Maximum En-
tropy model [5], Maximum Entropy Markov Model [20], Condi-
tional Random Field [17], and Neural Network models [18]. [25]
applied self-training with contemporary texts to update a name
tagger. [30] and [2] proposed active learning for NER. [35] pro-
posed expectation-driven learning for constructing a name tagger
in a few hours for low-resource languages. There are also work
on joint modeling of NER and linking [31], and NER with linked
data [12]. [33] applied bootstrapping for domain adaptation for
NER. Complementary to our work, [10] models coherence of entity
mentions in a document for the task of entity resolution. It could
be applied in conjunction with our method for further gain.

Most traditional NER tasks focus on newswire articles, with
exceptions of biomedical [16, 32] and Tweets [27]. The 2015 TAC
evaluation corpus [15] contains a significant number of discussion
forum posts.

Previous works show that typing of names changes [34], new
names emerges at a high rate and the NE tagger performance de-
creases through time [24]. [14] stressed that carefully selecting data
is important for bootstrapping a name tagger. This is orthogonal to
our observation that enforcing per-document tag consistency rather
than corpus-level consistency is crucial to maintaining precision.

3 ALGORITHM

Given a sentence as a sequence of tokens x;.7, the vanilla sequence
tagging model aims at finding the best sequence of tags §;.7:

1.7 = argmax f(x1.1, y1.75 0)
Y.

in which f is a normalized joint probability in CRF [17], or a un-
normalized measure in HMM [4]. The model is parameterized by
0 which can be learnt from gradient descent [17] or structured
perceptron [6].

This sentence-level model only captures local context. It fails to
extract the difficult names in the examples in Section 1. We showed
in Section 1 that tagging them benefits from more contexts around
matching strings in the same document.

For many missing names, error analysis shows that missed forms
were found elsewhere in the same document (e.g., examples in Sec-
tion 1). We hypothesize that each name string most likely has one
and only one sense per-document * and propose the following
tag-consistency objective. The objective is to enforce that the tag
sequences assigned to any pair of matching phrases > should have
the same name tag sequences.

g(D) = 2y, v;eno(Yi, Yj)

4Pushing it further, assuming one sense per-name-per-corpus will result in a significant
drop in precision. We will show that in the experiment section.
Se.g., two named mentions of XYZ LTD.

o (Yi,Yj) = Lymek = Ynsk> Yk € [0, Y]]
in which D is a document, Y; = yp,.m4k» Yj = Yn.nsk are two tag
sub-sequences for a pair of matching phrases (two sequences of
ordered matching tokens of the same length).
We interpolate the two objectives to combine tag consistency in
D with the sequence tagger. Let Y/ = {Y}, the setof all Y in D,

L(Y;X,D) = aZxepf(X,Y) + (1 — a)g(D)

The joint model is to find Y/ = arg maxy L(Y).

Finding the exact solution Yis computationally expensive since
exponentially many Ys need to be evaluated. Furthermore, it be-
comes intractable because g(D) introduces dependency between
pairwise sub-sequences across the whole document. We seek to
find an approximate solution by focusing on g(D) ¢ while using
arg max f (X, Y) to obtain an initial assignment of Ys. The heuristic
algorithm consists of the following steps. We run these steps for 5
iterations.

e For all sentences in the document, compute

J1.7 = argmax f(x1.7,y1.75 0)
Y1.T7

o Build phrase table for all name strings found in the document.
The tag sequence for each entry is the primary tag sequences
(the type that appears most frequently).

e Re-tag each non-name string that matches an entry in the
phrase table with the stored tag sequence. This guarantees
to increase g(D).

o Re-estimate 6 with stochastic gradient descent.

4 EXPERIMENTS

Dataset We use the English subset of the Entity Discovery (ED)
Evaluation dataset 7 from the 2015 TAC Cold Start Knowledge Base
Population (KBP) 8 evaluation. The TAC-KBP evaluations are a
series of evaluations organized by the U.S. National Institute of
Standards and Technology. We choose the ED dataset for three rea-
sons: First, we hypothesize that our approach will mitigate against
trained systems’ degradation over time as the real world drifts away
from their training data (e.g. with the introduction of new names
like SpaceX). Commonly used data sets (e.g. ACE, CONLL) are con-
temporaneous or overlap with our baseline system’s training data.
The TAC ED dataset consists primarily of recently (2014+) published
documents. Second, this dataset represents texts “in the wild”. It
is quite realistic and challenging for name finding. In contrast to
newswire datasets (e.g., CoNLL [28, 29]), it is a mix of newswire
articles and discussion forum (DF) posts (> 50% are DF posts). Third,
the dataset includes annotation of cross-document entity corefer-
ence allowing us to measure the impact of our approach on cross
document entity coreference.

We use the official scoring software ° from the TAC-KBP EDL
evaluations with strong_typed_mention_match (scores by strictly

O is set to 0.01.

"The core document set is shared between the Entity Discovery and Linking (EDL)
evaluation and the Entity Discovery Task. The EDL task includes some requirements
that are not measured here thus making the reported scores compatible with ED but
not EDL. EDL specific tasks include: the identification of specific individual nominal
PER spans and linking to an external KB.

8https://tac.nist.gov/2015/KBP/ColdStart/

“https://github.com/wikilinks/neleval



Systems strong_typed_mention_match mention_ceaf b_cubed
P R F1 P R F1 P R F1
Top-1 0.768 | 0.712 0.739 0.752 | 0.678 | 0.713 | 0.742 | 0.620 | 0.675
Baseline 0.770 | 0.712 0.740 0.742 | 0.686 | 0.713 | 0.745 | 0.623 | 0.679
This work | 0.763 | 0.726 0.744 0.737 | 0.701 | 0.718 | 0.740 | 0.644 | 0.689

Table 1: Entity Discovery scores on the 2015 TAC-KBP Cold Start English ED task. "Top-1" shows the best performing sys-
tem [23] in the 2015 TAC-KBP Cold Start English ED evaluation. "Baseline" shows our strong baseline system which uses a
standard feature-rich discriminative sequence tagging approach. "This work" improves over the "baseline" system by adding
one-sense-per-document constraint with the algorithm described in this paper.

Genre | Systems P R F1
News Baseline | 0.804 | 0.829 | 0.816
This work | 0.801 | 0.844 | 0.822
DF Baseline | 0.689 | 0.511 | 0.587
This work | 0.674 | 0.523 | 0.589

Table 2: strong_typed_mention_match scores on news and dis-
cussion forum posts (DF) on the English ED task.

Type | Systems P R F1
PER Baseline | 0.831 | 0.674 | 0.745
This work | 0.821 | 0.684 | 0.746
ORG Baseline | 0.625 | 0.643 | 0.634
This work | 0.622 | 0.667 | 0.644
GPE Baseline | 0.827 | 0.822 | 0.825
This work | 0.821 | 0.833 | 0.827

Table 3: strong typed mention_match scores on three entity
types on the English ED task.

Baseline | This work
PER | 2706 | 2777(+2.6%)
ORG | 2063 | 2152 (+4.3%)
GPE 2364 2413(+2.1%)

Table 4: Numbers of names found with both systems on the
English ED dataset.

matching mention spans and their types to the ground truth) as
the primary metric since it evaluates NER. We also include two
clustering metrics mention_ceaf [19] and b_cubed [1] in Table 1 to
show that changes in NER improves entity clustering.
Experimental setting As baseline, we use a standard feature-
rich discriminative sequence tagging approach [21] 1 with LDC
and internally annotated resources. Most of the training data was
published prior to 2005 (with a small amount of 2010 data as a
supplement). The system has been tuned for the ACE NER task and
achieves state-of-the-art performance on the ED dataset (shown as
baseline in Table 1). This system is reported as baseline and used

1OWe also experimented with a CRF-based model [8] with a rich set of features. On
ACE 2005 and TAC-KBP 2015 ED datasets, this model consistantly outperform the
CRF model. Therefore, we choose this model as the baseline.

as the basis of our extensions. The proposed approach applies to
any sequence tagging model. Therefore it could be applied to other
base NER approaches.

Our entity discovery system[22] works as follows: first it clusters
names that can be linked to the same Freebase entry based on textual
similarity (edit distance and contextual pattern matching), then it
clusters the unlinkable mentions !! into entities based on their
pairwise textual similarity.

Results and discussion Table 1 shows that our baseline system
outperforms the top system [23] ("top-1") in the TAC evaluation.
TAC participants [15] use a diverse range of algorithms such as
CRF, MEMM, with various background knowledge such as Wiki-
linking system output as features. This shows that our baseline is
competitive. The proposed method improved our strong baseline in
recall and F1 in all three metrics. It is able to find more name men-
tions without sacrificing much precision. Inspection of the results
shows that the algorithm is able to transfer the knowledge from an
“easy” context, e.g., in “SpaceX CEO”, to more ambiguous contexts
SpaceX is the.... Table 2 shows that our system improves over the
baseline in both newswire and discussion forums documents. More
improvement is seen in newswire, where the baseline system’s
higher precision reduces the error introduced by “copying” names
to a new context. Table 3 and 4 show the improvements and the
count of new name mentions found broken down by entity type.
Our algorithms finds more ORGs than PER and GPE, therefore the
improvement on ORG is higher than the other two. As shown in
Table 1, the improvements in base NER lead to a positive impact
on cross-document clustering of mentions into entities.

We further extend our approach to enforcing the tag-sequence
consistency of name strings to the entire corpus. This “one-sense-per-
corpus” assumption, however, resulted in 8 points drop in precision
with only 3 points improvement in recall. Error analysis showed that
tagging errors from ambiguous contexts were propagated across the
corpus, leading to the large precision drop. Thus the limited-scope
one-sense-per-document assumption is more accurate and effective.

5 CONCLUSION

We present a novel name finding approach that combines a sentence-
level sequence tagging model and a document-wide tag-consistency
objective to improve the recall of NER. We show that it achieves
state-of-the-art performance in both NER and mention clustering in
the TAC-KBP Cold Start Entity Discovery task. Our next step is to
improve the re-tagging scheme with fuzzy matching as well as using

"mentions that couldn’t be linked to a Freebase entry



world knowledge (e.g., name variants from Freebase). Since our
algorithm is language-independent, it could be applied to Chinese,
Spanish and low-resource languages.
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