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Abstract

Building knowledge bases (KB) automat-
ically from text corpora is crucial for
many applications such as question an-
swering and web search. The problem
is very challenging and has been divided
into sub-problems such as mention and
named entity recognition, entity linking
and relation extraction. However, com-
bining these components has shown to be
under-constrained and often produces KBs
with supersize entities and common-sense
errors in relations (a person has multi-
ple birthdates). The errors are difficult
to resolve solely with IE tools but be-
come obvious with world knowledge at
the corpus level. By analyzing Freebase
and a large text collection, we found that
per-relation cardinality and the popular-
ity of entities follow the power-law dis-
tribution favoring flat long tails with low-
frequency instances. We present a proba-
bilistic joint inference algorithm to incor-
porate this world knowledge during KB
construction. Our approach yields state-
of-the-art performance on the TAC Cold
Start task, and 42% and 19.4% relative
improvements in F1 over our baseline on
Cold Start hop-1 and all-hop queries re-
spectively.
∗The third author is currently with The Affinity project.

This work was done while she was at BBN.
This work was supported by DARPA/I2O Contract No.

FA8750-13-C-0008 under the DEFT program. The views,
opinions, and/or findings contained in this article are those
of the author and should not be interpreted as representing
the official views or policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the De-
partment of Defense. This document does not contain tech-
nology or technical data controlled under either the U.S. In-
ternational Traffic in Arms Regulations or the U.S. Export
Administration Regulations.

1 Introduction

Automatically transforming a large corpus into a
structured knowledge base (KB) has long been a
goal of information extraction (IE) research. KB
population incorporates many IE tasks including
named entity recognition, entity linking and rela-
tion extraction, each of which rely on deeper lin-
guistic analysis, e.g., syntactic parsing or anaphora
resolution. Since 2012, NIST 1 has run an open
shared task in KB population (KBP) under TAC 2.
Most participating systems (Mayfield et al., 2014;
Min et al., 2015; Roth et al., 2015; Angeli et al.,
2014; Nguyen et al., 2014; Monahan and Carpen-
ter, 2012) combine many independent components
to perform the full task.

As will be familiar to most IE researchers, the
individual components are not perfect. When
combined into a pipeline, errors compound. We
found that a KB produced with a simple combina-
tion of state-of-the-art IE components (Ramshaw
et al., 2011) is very sensitive to component-level
errors (Grishman, 2013).

Table 1 illustrates a real entity coreference mis-
take. Barack Obama and Ehud Barak were incor-
rectly linked because of ambiguous context and
high lexical overlap. The mistake leads to er-
rorful facts about employment, familial relations,
etc. We see additional mistakes when we review
the names in those entities with the most men-
tions: the U.S. entity contains more than 20,000
mentions. 85% are correct (e.g., United States,
U.S.), but there is a long tail of incorrect yet infre-
quent(each accounting for < 1%) mentions linked
to the entity e.g., North America, Latin American.
We also see counter-intuitive errors in relation ex-
traction: 5% of person entities have multiple birth-
dates; the KB asserts 8 spouses for an infrequently

1U.S. National Institute of Standards and Technology
2Text Analysis Conference: www.nist.gov/tac/
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mentioned entity. Similar errors have been re-
ported in (McNamee et al., 2013) and (Singh et
al., 2013b).

Named mentions of PER:Barack Obama:
Barack, Barack Obama, Ehud Barak, Barak
Text: Barak endorses Barack, ... Defense Min-
ister Ehud Barak said Barack Obama has been
the most supportive president on Israeli security

Table 1: Example of entity linking errors.

Analyzing these errors suggests a limitation of
performing KB population solely with IE tools.
These mistakes only become obvious in the con-
text of external world knowledge with the full
set of facts extracted from many documents, e.g.
when applying our expectations about the cardi-
nality of a relation. With just a single document,
resolving these mistakes requires challenging in-
ference (Ji et al., 2005).

In this paper, we present a probabilistic frame-
work to incorporate real-world knowledge into
Cold Start KB population. Our contributions in-
clude:
• Identifying from real world datasets that en-

tity popularity and each relation’s cardinality
follow the power-law distribution with long
tails of low-frequency instances.
• Defining a corpus-level joint objective for

KBP that incorporates multiple IE compo-
nents and prior world knowledge on entity
popularity and per-relation cardinalities, and
showing the prior knowledge helps to reduce
errors.
• Outperforming the top-ranked entry in Cold

Start 2015.
The paper is organized as follows: we first in-

troduce the Cold Start KBP task, then present the
joint probabilistic framework, followed by anal-
ysis of the world knowledge and how to incor-
porate it. We then describe our inference algo-
rithm. Lastly, we present experimental results, re-
lated work, and conclude with suggestions for fu-
ture research.

2 Cold Start KBP

The schema consists of 3 entity types (person,
organization, and GPE) and 42 slots (relation
classes) 3. Systems start with an empty KB (cold
start) and populate it according to the schema with

3We will use slot and relation interchangeably in this pa-
per.

information extracted from the corpus. All facts in
the KB must be grounded with justifying text from
the corpus.

A KB entity is defined as a cluster of mentions
that refer to the same real-world entity, e.g., Smith,
John Smith, and John H Smith are 3 mentions for
the entity John H Smith. Every named mention of
an entity is recorded. A relation is a triplet (sub-
ject, slot, object), where subject and object are en-
tities, 4 and slot is the relation between them. For
example, (Bart Simpson, per:siblings, Lisa Simp-
son) is the relation Bart Simpson is a sibling of
Lisa Simpson. A relation’s provenance points to
up to 4 snippets in the corpus that justify the re-
lation. The evaluation process is described in the
Experiments Section.

3 A Probabilistic Framework

Following most Cold Start KBP systems (May-
field et al., 2014; Min et al., 2015; Roth et al.,
2015; Angeli et al., 2014; Nguyen et al., 2014;
Monahan and Carpenter, 2012), our baseline uses
a cascade of NLP components from document-
level analysis to corpus-level aggregation. We run
BBN’s SERIF (Ramshaw et al., 2011) for men-
tion, value and name tagging, coreference resolu-
tion, sentence-level relation extraction, alongside
other analysis such as syntactic parses. Then we
aggregate entities with entity discovery and link-
ing and relations with relation extraction.

Given a set of pre-trained NLP components, the
process is essentially an inference task. We intro-
duce the following notation:
• M is the list of mentions
• E is the set of entities to populate the KB
• R is the set of relation types.
• xi is the observed text for mention i, xi ∈M
• ui is entity ID from the KB assigned to men-

tion i, i ∈ {1, 2, ..., |M |}, ui ∈ {1, 2, ..., |E|}
• zi,j = r indicates the relation r between

a pair of mentions xi, xj ∈ M and r ∈
R

⋃{Other}
• yri,j is an indicator variable: yri,j = 1 if

a relation r ∈ R exist between entity pair
< ei, ej >, i, j ∈ {1, 2, ..., |E|}, and 0 other-
wise.

The key steps in the pipeline are the following:
Mention extraction: We use a structured per-

ceptron model (Ramshaw et al., 2011) to extract
named mentions M .

4A small number of the relations take values not entities.
We do not differentiate in this work.
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Figure 1: A simplified plate model of the probabilistic model(left), and an example (right) illustrates
the KB construction process with aligned variables. The plate model only shows RE and EDL factors,
and factors incorporating world knowledge. The example(right) compensates by showing the process
without priors.

Entity Discovery & Linking (EDL): This step
creates a candidate entity set E for the KB and
infers which document entity (represented by its
named mentions) is associated with which KB en-
tity , i.e. assigning values for {ui}. We use a
sieve-like (Raghunathan et al., 2010) algorithm for
in-document coreference. For simplicity, we only
model EDL of names 5.

We define potential functions over variables
{ui} for each pair of mention xi and the jth en-
tity ej :

ΨEDL
i (ui = j|xi) = exp(Σkθkφk(ui = j|xi))

The baseline system solves the EDL problem by
inferring u∗i = arg max ΨEDL

i (ui). It uses a name
database collected from Freebase (Bollacker et al.,
2008) and GeoNames 6. First, it clusters novel
names to create new candidate entities in addition
to entries in the name database. A novel name is
defined as a name that could not be resolved to
a database entry. It then rescans the corpus and
links each document-level entity to a corpus-level
entity (an entry in the name database or a novel
name). The EDL model ΨEDL uses features such
as string edit distance and indicators representing
whether appearing in the same name variant set.
{θk} and {φk} are the weights and feature func-
tions respectively.

Mention-level Relation Extraction (MRE):
This step infers which relation zi,j = r(r ∈
R

⋃{Other}) exists between each pair of men-
tions < xi, xj >, we define potential functions:

ΨMRE
i,j (zi,j = r|xi, xj) = exp(Σkθ

′
kφ
′
k(zi,j = r|xi, xj))

We run several relation finding algorithms (Min
et al., 2015) , including statistical models trained

5Decisions made for named mentions will be applied to
the corresponding document-level entities.

6www.geonames.org

from ACE 7 relation annotation and distant super-
vision (Mintz et al., 2009) in which we align Free-
base pairs into Gigaword (Parker et al., 2011) to
generate training examples, and a pattern matcher
with a few hand-written patterns that capture local
contexts.

To train a log-linear model ΨMRE for combin-
ing these algorithms and to tune the confidences
of their extractions, we follow (Viswanathan et
al., 2015) and train a stacked classifier using out-
put and confidences of the extractors. We use as-
sessment datasets from TAC Cold Start KBP 2013
and 2014, and Slot Filling evaluations in 2013 and
2014. The features we used are: source algorithm
name, slot, confidence score (if exists), argument
mention level (pronoun, name, or nominal), lexi-
cal sequence between pair of arguments, proposi-
tional path between the pair of arguments. {θ′k}
and {φ′k} are the weights and feature functions re-
spectively.

Relation Extraction (RE): This aggregation
step infers which relations exist between each pair
of entities at the KB level, i.e. assigning values for
{yri,j}. We define the potential functions over the
indicator variables {yri,j}, by looking at all pairs
of mentions xm, xn ∈ M , their potential to have
a relation r and likelihood to be associated with
entities ei, ej ∈ E:

ΨRE
i,j,r(y

r
i,j = 1|x) =

max
<m,n>

(ΨEDL
m (um = i|xm)ΨEDL

n (un = j|xn)

ΨMRE
m,n (zm,n = r|xm, xn))

and ΨRE
i,j,r(y

r
i,j = 0|x) = ΨRE

0 where ΨRE
0 is a

parameter learned from previously seen data. The
aggregation from a set of zm,n to a set of yi,j
is similar to noisy-or relation aggregation (Hoff-
mann et al., 2011; Riedel et al., 2010; Sur-

7itl.nist.gov/iad/mig/tests/ace/2005/
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deanu et al., 2012) and supports overlapping re-
lations (Hoffmann et al., 2011; Surdeanu et al.,
2012).

The joint distribution defined over the full set
of variables u, y is:

Pr(u, y|x) ∝
∏
m

ΨEDL
m (um|xm) ·

∏
i,j,r

ΨRE
i,j,r(y

r
ij |x)

The Cold Start KBP problem can be seen as
finding the maximum a posteriori (MAP) config-
uration:

(u∗, y∗) = arg max
(u,y)

Pr(u, y|x)

The baseline system approximates the solu-
tion by solving in 2 separate stages: solve EDL
by fixing u∗m = arg max1≤i≤|E|ΨEDL

m (um =
i|xm) for all xm, then solve RE by fixing y∗ri,j =
arg maxδ∈{0,1}ΨRE

i,j,r(y
r
i,j = δ|x, u∗) for all i, j, r.

The potential ΨRE
i,j,r(y

r
i,j = 1|x, u∗) is a relaxed

form for ΨRE
i,j,r(y

r
i,j = 1|x):

ΨRE
i,j,r(y

r
i,j = 1|x, u∗) =

max
m,n:

(u∗m,u∗n)=(i,j)

(ΨEDL
m (u∗m = i|xm)ΨEDL

n (u∗n = j|xn)

ΨMRE
m,n (zm,n = r|xm, xn))

In the relaxed form, the optimization problem
required for estimating the potential of y∗ri,j is lim-
ited to search only over pairs of mentions xm, xn
which are now associated with the entities ei, ej ,
i.e. um = i and un = j, instead of enumerat-
ing over all pairs of mentions. This can be done
efficiently.

4 Incorporating World Knowledge

We incorporate world knowledge related to entity
popularity and a set of per-relation cardinalities as
additional factors in the objective. To learn these
factors’ form, we analyze real-world datasets and
find that both factors follow the power-law distri-
bution with long tails of low-frequency instances.

4.1 Entity Popularity
We define entity popularity (EP) as the number
of mentions of an entity in a corpus. Entities
vary in popularity– famous people (e.g. politi-
cians, athletes), countries, and large organizations
will be mentioned frequently in news, while other
entities– a small city, the local valedictorian may
only be mentioned a few times. Ideally, we would

model the EP distribution with counts from a large
corpus annotated for names and cross-document
entity coreference. As we are not aware of any
such resource, we look at two approximations:

Name variants (NV): We collect name variants
(e.g., UN and United Nations) for PER and ORG
from Freebase and for GPE from GeoNames.

Name Mentions (NM): From a 50K document
sample of Gigaword, for each entity, we search for
exact matches to its name variants, and count these
matches to estimate the number of entity men-
tions.

Figure 2 (left) plots the per-entity relationship
between the count of NM and NV with rank. Both
follow the power-law distribution (i.e. the plots
are close to straight lines in a log-log scale). In
other words, most entities have only a small num-
ber of variants and are mentioned only a few times.
A handful of popular entities are mentioned fre-
quently and have many variants 8. The size of
entities in the Kripke (Finin et al., 2014) system
follows power-law distribution, further supporting
our findings.

Formally, we define for ith entity the popularity
variable qi(u) = ΣmI(um = i) and the potential
for EP factor ΨEP

i (u) as follows:

ΨEP
i (u) ∝ exp(θEP (qi(u)))

in which θEP (qi(u)) = α ln(qi).
The parameter α > 0 is initially fit from Free-

base entities and then finetuned with TAC 2014
dataset to reflect real-world distributions. The EP
term favors EDL solutions u with a popularity dis-
tribution that follows a power-law with a long tail
of low-frequency entities.

4.2 Relation Cardinality
We define relation r’s cardinality regarding ei as
the number of entities or values associated with ei
through r. For example, if John Smith has 3 chil-
dren, the cardinality of r=per:children regarding
ei=John Smith is 3. Formally, we notate the set
of variables {yrij} as yri , and the cardinality of a
relation r of entity ei as dri = Σjy

r
ij .

Per-relation cardinalities (RC) often reflect real
world constraints– people have at most one birth-
date and typically no more than 5 siblings. To
understand the cardinality constraints for the Cold
Start relations, we use Freebase, a large, manually

8We confirm that a few entities have many variants e.g.
for Elizabeth II, 364 variants including Elizabeth II of the UK,
Her Majesty the Queen, Queen of Australia, etc.
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Figure 2: Real-world entity popularity (left) and per-relation cardinality (right) both follow the power-
law distribution. x-axis shows ranks and y-axis shows counts (both are in log scale). The Left figure
plots both numbers of name variants and numbers of mentions to ranks for PER, ORG and GPE.

curated KB. We align Freebase to the TAC schema
following (Chen et al., 2010) and then generate a
cardinality for each relation for all entities. The
relationship between RC and RC-rank for the the
6 most frequent relations is plotted in Figure 2
(right). For these relations, RC closely resembles
a power-law distribution. To favor both power-
law and a soft size-limit on cardinality, we define
the following potentials for RC factors for each
relation-entity pair:

ΨRC
i,r (yr) ∝ exp(θRC(dri ))

in which θRC(dri )) = β ln(dri ) − γ(max(dri −
µr, 0))2 with parameters β, γ > 0, and µr as the
mean of the cardinalities of a relation r (estimated
from Freebase). The first term in the potential has
the power-law assumption, while the second term
penalizes large cardinalities for going beyond the
mean µr.

4.3 Incorporating Prior World Knowledge
Incorporating the EP and per-relation RC terms
into the joint distribution, we obtain the joint ob-
jective:

Pr∗(u, y|x) ∝ Pr(u, y|x)·∏
1≤i≤|E|

ΨEP
i (u) ·

∏
1≤i≤|E|

r∈R

ΨRC
i,r (yri )

with Pr(u, y|x) as the baseline objective. A sim-
plified plate diagram is shown in Figure 1.

Learning constraints for real-world corpora:
As we’re not aware of any large corpus anno-
tated exhaustively with entities and relations, we
fit the parameters of the constraints initially from

Freebase entities and relations, and then fine-tune
them using empirical utility maximization (Jan-
sche, 2005; Ye et al., 2012) for TAC Cold Start
all-hop F1 with grid search in the parameter space,
using previous years’ TAC assessment. Freebase
is used in initialization because of its scale while
finetuning with TAC assessment ensures the fac-
tors to more appropriately represent the underly-
ing distribution of entity popularity and relation
cardinality in a real-world corpus.

5 Jointly Inferring Entities and Relations

The problem of Cold Start KBP becomes finding
a MAP assignment of u and y for Pr∗(u, y|x).
Finding the exact solution is hard, as many terms
in the objective involve large groups of vari-
ables. We propose Algorithm 1 as an approximate
heuristic. Line 1 generates an initial KB by ap-
proximating a solution for the baseline objective
Pr(u, y|x) (Section 3), but tends to overlink enti-
ties and over-aggregate relations. Lines 2-8 itera-
tively refine the KB by searching over the (u, y)-
space using operation o ∈ {SplitE, PruneR}. At
t-th iteration, it performs the operation o with the
highest potential gain ∆ lnPr∗(o(ut, yt)|x). The
process is repeated until the gain is smaller than a
very small value ε.

SplitE: splits an entity ei into two entities.
Since there are an exponential number of pos-
sible SplitE actions, we uses the following two
heuristics: 1) cluster name mentions by their string
forms, and find an “outlier” cluster of mentions,
2) rank ei’s mentions {xm : u∗m = i} by their
local EDL potential ΨEDL

m (u∗m|xm) and find the
lowest-ranked mention as an “outlier”. After find-
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Input : x, α, β, γ, µr for r ∈ R
Output: u, y

1 (u0, y0) = arg max(u,y) Pr(u, y|x)
2 t← 0
3 repeat
4 o = arg maxo ∆ lnPr∗(o(ut, yt)|x)
5 if o! = null then
6 (ut+1, yt+1)← Execute(o(ut, yt))
7 t← t+ 1
8 until ∆ lnPr∗(o(ut, yt)|x) < ε;

Algorithm 1: The MAP inference algorithm

ing an “outlier” mention cluster of ei, we divide
it into two entities: eg with the “core” mentions,
and eh with the “outlier” mention cluster. We re-
peat the process to find all outlier entities and sepa-
rate them from the entity. Relation arguments will
be reattached to the new entities accordingly. We
only consider a short list of most popular entities
and split each using the heuristics described above.

PruneR: removes a batch of relations (Y =
{yri,j}) by setting 0: yri,j ← 0 for each yri,j ∈ Y .
The batch is generated with the following steps:
first select a set of entity-relation pairs (ei, r) with
the highest cardinality dri =

∑
j y

r
i,j , then repeat-

edly select the associated relation with the low-
est potential j∗ = arg minj:yr

i,j=1 ΨRE(yri,j |x).
Each yri,j will be added into the batch until its size
reaches 50.

We define the gain for SplitE and PruneR as:

∆ lnPr∗(SplitE(eg, eh ← ei)|x)) =

Σm(ln ΨEDL
m (g) + ln ΨEDL

m (h)− ln ΨEDL
m (i))

+ Σr∈R(ln ΨRE
g + ln ΨRE

h − ln ΨRE
i

+ ln ΨRC
r (y′r)− ln ΨRC

r (yr))

+ ln ΨEP
g (u′) + ln ΨEP

h (u′)− ln ΨEP
i (u)

∆ lnPr∗(PruneR(Y )|x) =

Σr∈R(ln ΨRC
r (y′r)− ln ΨRC

r (yr))

+ Σyr
i,j∈Y (ln ΨRE

0 − ln(ΨRE
i,j,r(y

r
ij = 1|x)))

in which ΨEDL
m (i) is short for ΨEDL

m (um = i|xm)
with m ranges over IDs of mentions in ei, and
ΨRE
i is the sum of the RE factors which are re-

lated to entity ei. y′, u′ are the assignment to y, u
if a SplitE or a PruneR operation is executed. We
also use the short form ΨRC

r (y′r) as the sum of
the RC factors which have changed because of a
SplitE or a PruneR operation.

Since the gain is only computed for the short-
listed entities and relations, and we only calcu-

late the subset of factors (EDL, RE, RC, and
EP) related to the operation, ∆ lnPr∗(SplitE|x)
and ∆ lnPr∗(PruneR|x) can be calculated effi-
ciently.

6 Experiments

We evaluate our system with resources provided
to TAC 2015 participants, including 1) a source
corpus of 50,000 documents from newswire and
discussion forums, 2) a query set consisting of
317 hop-0 entities (expanded to 1,148 hop-0 entry-
point mentions and 8,191 hop-1 queries), 3) LDC 9

assessment of participant responses from auto-
matic submissions 10 and a manually created sub-
mission 11, and 4) software that retrieves answers
from a KB and measure performance with the as-
sessment. Additionally, we use TAC 2013 and
2014 datasets for tuning parameters and training
stacked classifiers. α = 10, β = 5, γ = 0.1 are set
empirically following Section 4.3. We run each
experiment 20 times and average the scores.

6.1 Queries, Assessment, and Scoring
We briefly describe the evaluation process and
scoring metrics. More details appear in (May-
field, 2014). The Cold Start evaluation mea-
sures KB-quality by probing the KB with two
types of queries. The queries are either at hop-
0 (e.g., which organization(s) is(are) founded by
Bill Gates?) or hop-1 (e.g., in which city(-ies)
the organization(s) founded by Bill Gates is(are)
headquartered?). More formally, the evaluation
software tries to find an entity e0 in the submitted
KB that covers the entry-point mention of a hop-0
query q0, then finds all relational triples matching
(e0, r1, ?). X , the set of entities matching the open
variable, is reviewed by annotators for: (a) assess-
ment of correctness and (b) the identification of
non-redundant subset X ′. The software generates
an hop-1 query q1 = x′ for each x′ ∈ X ′, finds the
entity e1 that aligns with q1, and then finds triples
matching (e1, r2, ?). This results in response set
Y , the set of entities matching the second open
variable. Set Y is assessed by LDC in the same
manner as Set X . The process is performed over
all submitted KBs 12. The answers in X (hop-0)

9https://www.ldc.upenn.edu/
1020 teams participants in the task with >50 KBs submit-

ted.
11created by time-limited LDC annotators
12LDC generates the time-limited manual run directly

from text queries, but treats the responses identically for as-
sessment
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Systems
CS-SF CS-LDC-MAX

Hop-0 Hop-1 Hop-0 Hop-1
P R F1 Ign P R F1 Ign P R F1 Ign P R F1 Ign

TAC rank1 48 30 37 0 31 17 22 0 50 35 40 0 28 20 23 0
offset-based 50 31 38 64 31 18 23 23 52 35 42 19 30 21 24 6
string-match 49 31 38 13 32 19 24 11 52 36 42 6 29 21 25 3

assess 50 31 39 0 32 19 23 0 53 37 43 0 29 21 24 0

Table 2: CS-SF and CS-LDC-Max micro-averaged precision, recall and F1 of hop-0 and hop-1 queries
for the TAC 2015 top-ranked KB submission (Min et al., 2015) and our KBC+E+R system (3 bottom
rows) using various post-hoc scoring techniques (offset-based, string-match and assess). Ign is the num-
ber of unassessed answers.

are correct when when sufficiently justified in the
source corpus. The answers in Y (hop-1) are cor-
rect only if both the element of X that generated
the response is correct and the response in Y is
justified in the text.

NIST reports two metrics, CS-SF and CS-
LDC-MAX, which differ in the treatment of mul-
tiple entry-point mentions for a single real-world
entity. CS-SF treats each distinct mention as an
independent query. CS-LDC-MAX takes only the
entry-point mention which maximizes system per-
formance for a given query-entity (i.e. either the
responses for Bill Gates or William Gates). For
both metrics, NIST calculates micro-averaged pre-
cision, recall, and F1 over all queries. As men-
tioned above, the official evaluation is a human
post-hoc assessment of KB output. A system de-
veloped outside of the evaluation window, e.g.,
our proposed algorithm, will likely include re-
sponses for which truth is not known, which are
ignored by the scoring software. Table 2 compares
the TAC top-ranked system to our full configura-
tion using three post-hoc scoring strategies: strict
offset-based match, string-match match, and as-
sess in which we apply the offset-based metric us-
ing additional internally performed assessments.
For the ablation study in Table 3, we use the of-
ficial scorer’s string-match mode. A small num-
ber of responses are ignored (Ign) even in string-
match mode. We further account for these re-
sponses by re-estimating precision for hop-0 and
hop-1 assuming that the precision of the ignored
responses at hop-1 is the same as the hop-0 preci-
sion 13. When this optimistic estimate differs from
reported precision, we report it in parentheses.

13This overestimates the hop-1 precision which is lower
than hop-0 precision because of error compounding.

6.2 Results and Discussion

Table 2 compares our full system (KBC+E+R)
to the top performing system in TAC Cold Start
2015 using three different approaches to post-hoc
scoring. Without manual effort, our joint model-
ing approach exceeds the performance of the top-
ranked system, which uses a cascade of manually-
specified rules (Min et al., 2015). Our system ob-
tains 5.4% and 4.8% relative improvement in hop-
0 and hop-1 CS-SF F1 over the top-ranked system.
Improvement is observed in both hop-0 and hop-1
and with both CS-SF and CS-LDC-MAX show-
ing that the improvement is robust. A sign test
shows that the improvements are significant with
p < 0.01.

Systems Hop-0 Hop-1
P R F1 P R F1

KBC 45 33 37.9 14(16) 21 17
KBC+E 45 32 37.9 18(21) 21 19
KBC+R 49 32 38.2 27 19 23

KBC+E+R 49 31 38.4 32 19 24

Table 3: CS-SF scores (string-match) for differ-
ent priors: KBC (baseline: no world knowledge),
KBC+E (only entity-based factors), KBC+R(only
relation-based factors), KBC+E+R(both sets of
factors). Numbers in parentheses indicate the op-
timistic estimate when it differs from the number
reported by the scoring software.

Table 3 ablates each type of world knowledge
to show the impact of entity and relation-based
factors independently when compared to a version
of our system without world knowledge. As ex-
pected, the impact of world knowledge is seen in
improvements in precision at minor costs to re-
call. Both types of world knowledge have higher
impact on hop-1 than hop-0 as hop-1 measures
the formation of the KB with multiple hops in re-
lations. Adding the relation factors has a larger
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impact than adding the entity factors because our
splitting of entities is conservative (only affects
< 0.1% entities) while relations’ factors removes
7.3% relations. The two classes of factors ap-
pear to have largely independent impacts– com-
bining them yields a large improvement. In to-
tal, adding prior world knowledge yields relative
improvements of 9% in hop-0 precision, 131% on
hop-1 precision, 42% on hop-1 F1, and 19.4% on
all-hop F1 over the baseline. A sign test shows the
improvements are significant with p < 0.01.

Reduction of errors: With relation factors
added (KBC+R and KBC+E+R), 7.3% relations
(out of 243K) are removed by PruneR with min-
imal recall loss. The median number of fillers
for relations for the top 1% entities drops, e.g.
per:title from 7 to 5, per:employee or member of
from 5 to 2, and per:city of birth from 3 to 1. In-
spection shows that our approach addresses many
obvious mistakes: U.K. is removed as a response
to (Securities and Exchange Commission(SEC),
org:country of headquarters, ?) while U.S. re-
mains. The error, caused by UK’s SEC which
means UK’s analog to the SEC of US, is very
hard to resolve without world knowledge. With
cardinality constraints that favor only one coun-
try of headquarters for an ORG and U.K has a
lower confidence than U.S. as a filler, the model
identifies U.K. as an incorrect answer.

With entity factors added (KBC+E+R and
KBC+E), the model favors a larger amount of
smaller but more precise entities. It generates 4%
new entities (out of 212K) by splitting the largest
< 0.1% entities with the SplitE heuristics de-
scribed in section 5. For example, the entity Aus-
tralia is splitted into 3 entities, Australia and two
outliers West Aussie and Australian Capital Ter-
ritory. It also singles out entities such as South
America, Idaho, Colorado from the giant U.S. en-
tity with > 20, 000 mentions. When querying the
KB facts related to U.S., erroneous answers that
would otherwise be reported through relations as-
sociated with South America or the U.S. states will
be removed.

7 Related Work
Cold Start KBP The TAC Cold Start KBP work-
shop has attracted many text-based KBP sys-
tems (McNamee et al., 2012; McNamee et al.,
2013; Mayfield et al., 2014; Min et al., 2015;
Roth et al., 2015; Angeli et al., 2014; Nguyen
et al., 2014; Monahan and Carpenter, 2012).

KELVIN (Mayfield et al., 2014) and BBN sys-
tem (Min et al., 2015) both use hand-crafted rules
to limit the number of fillers, e.g., remove less pre-
cise relations if a person has more than 8 (current
and ex-) spouses. (Wolfe et al., 2015) and (He
and Grishman, 2015) proposed interactive tools
for KB construction with human guidance.

Knowledge Base Completion With the re-
cent popularity of structured KBs such as Free-
base (Bollacker et al., 2008), YAGO (Suchanek
et al., 2007) and above-mentioned KBP tech-
niques, there is a growing interest in complet-
ing a partially-complete KB with tensor decom-
position (Chang et al., 2014), matrix factoriza-
tion (Riedel et al., 2013), graph random walk (Lao
et al., 2011; Lao et al., 2012; Gardner et al., 2014),
neural networks (Socher et al., 2013; Neelakantan
et al., 2015; Dong et al., 2014) and others (Guu et
al., 2015; Gardner et al., 2013; Das et al., 2016).
Knowledge Vault (Dong et al., 2014) pushes it fur-
ther by combining many extraction components
while estimating the confidence of their extrac-
tions and scales it to the Web. Model combi-
nation (Viswanathan et al., 2015) and confidence
estimation (Wick et al., 2013; Li and Grishman,
2013) is related to our model for combining ex-
traction components. The work described here dif-
fers from KB completion tasks in its requirement
that the initial KB is empty and that all informa-
tion in the KB be grounded in a text corpus.

Joint Modeling and Inference for IE To ad-
dress the problem of compounding errors with
multiple NLP components for IE, several pa-
pers (Finkel and Manning, 2009; Mccallum and
Jensen, 2003; Finkel et al., 2006; Yao et al., 2010;
Singh et al., 2009; Poon and Domingos, 2007;
Wellner et al., 2004; Poon and Vanderwende,
2010; Riedel and McCallum, 2011; Chen et al.,
2014; Kate and Mooney, 2010; Miwa and Sasaki,
2014) propose joint modeling and inference for
IE. (Roth and Yih, 2007) use the ILP framework
to enforce manually-specified constraints between
entity and relation identification, while (Yu and
Lam, 2010) models these two tasks in encyclo-
pedia articles using a discriminative probabilistic
model. (Li and Ji, 2014) jointly extracts entity
mentions and relations with a structured percep-
tion with beam search. (Singh et al., 2013a) per-
forms joint inference for entity, relation and coref-
erence with an extension of the belief propagation
algorithm. The work described here differs in its
use of world knowledge. The joint modeling and
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inference for IE is not comparable but comple-
mentary to our method, therefore can be incorpo-
rated into our system for further gain.

8 Conclusion and Future Work

We present a joint probabilistic framework for
end-to-end Cold Start KBP with prior world
knowledge. Experiments show it surpassing the
best-performing system at the NIST TAC 2015
Cold Start evaluation. We plan to investigate addi-
tional world knowledge in the near future.
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