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Abstract 

Discovering significant types of relations 
from the web is challenging because of its 
open nature. Unsupervised algorithms are 
developed to extract relations from a cor-
pus without knowing the relations in ad-
vance, but most of them rely on tagging 
arguments of predefined types. Recently, 
a new algorithm was proposed to jointly 
extract relations and their argument se-
mantic classes, taking a set of relation in-
stances extracted by an open IE algorithm 
as input. However, it cannot handle poly-
semy of relation phrases and fails to 
group many similar (“synonymous”) rela-
tion instances because of the sparseness of 
features. In this paper, we present a novel 
unsupervised algorithm that provides a 
more general treatment of the polysemy 
and synonymy problems. The algorithm 
incorporates various knowledge sources 
which we will show to be very effective 
for unsupervised extraction. Moreover, it 
explicitly disambiguates polysemous rela-
tion phrases and groups synonymous 
ones. While maintaining approximately 
the same precision, the algorithm achieves 
significant improvement on recall com-
pared to the previous method. It is also 
very efficient. Experiments on a real-
world dataset show that it can handle 14.7 
million relation instances and extract a 
very large set of relations from the web.  

1 Introduction 

Relation extraction aims at discovering semantic 
relations between entities. It is an important task 

that has many applications in answering factoid 
questions, building knowledge bases and improv-
ing search engine relevance. The web has become 
a massive potential source of such relations. How-
ever, its open nature brings an open-ended set of 
relation types. To extract these relations, a system 
should not assume a fixed set of relation types, nor 
rely on a fixed set of relation argument types.  

The past decade has seen some promising solu-
tions, unsupervised relation extraction (URE) algo-
rithms that extract relations from a corpus without 
knowing the relations in advance. However, most 
algorithms (Hasegawa et al., 2004, Shinyama and 
Sekine, 2006, Chen et. al, 2005) rely on tagging 
predefined types of entities as relation arguments, 
and thus are not well-suited for the open domain.  

Recently, Kok and Domingos (2008) proposed 
Semantic Network Extractor (SNE), which gener-
ates argument semantic classes and sets of synon-
ymous relation phrases at the same time, thus 
avoiding the requirement of tagging relation argu-
ments of predefined types. However, SNE has 2 
limitations: 1) Following previous URE algo-
rithms, it only uses features from the set of input 
relation instances for clustering.  Empirically we 
found that it fails to group many relevant relation 
instances. These features, such as the surface forms 
of arguments and lexical sequences in between, are 
very sparse in practice. In contrast, there exist sev-
eral well-known corpus-level semantic resources 
that can be automatically derived from a source 
corpus and are shown to be useful for generating 
the key elements of a relation: its 2 argument se-
mantic classes and a set of synonymous phrases. 
For example, semantic classes can be derived from 
a source corpus with contextual distributional simi-
larity and web table co-occurrences. The “synony-
my” 1  problem for clustering relation instances 
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could potentially be better solved by adding these 
resources. 2) SNE assumes that each entity or rela-
tion phrase belongs to exactly one cluster, thus is 
not able to effectively handle polysemy of relation 
phrases2. An example of a polysemous phrase is be 
the currency of  as in 2 triples <Euro, be the cur-
rency of, Germany> and <authorship, be the cur-
rency of, science>. As the target corpus expands 
from mostly news to the open web, polysemy be-
comes more important as input covers a wider 
range of domains. In practice, around 22% (section 
3) of relation phrases are polysemous. Failure to 
handle these cases significantly limits its effective-
ness. 
    To move towards a more general treatment of 
the polysemy and synonymy problems, we present a 
novel algorithm WEBRE for open-domain large-
scale unsupervised relation extraction without pre-
defined relation or argument types. The contribu-
tions are: 

• WEBRE incorporates a wide range of cor-
pus-level semantic resources for improving rela-
tion extraction. The effectiveness of each 
knowledge source and their combination are stud-
ied and compared. To the best of our knowledge, it 
is the first to combine and compare them for unsu-
pervised relation extraction. 

• WEBRE explicitly disambiguates polyse-
mous relation phrases and groups synonymous 
phrases, thus fundamentally it avoids the limitation 
of previous methods. 

• Experiments on the Clueweb09 dataset 
(lemurproject.org/clueweb09.php) show that 
WEBRE is effective and efficient. We present a 
large-scale evaluation and show that WEBRE can 
extract a very large set of high-quality relations. 
Compared to the closest prior work, WEBRE sig-
nificantly improves recall while maintaining the 
same level of precision. WEBRE is efficient. To 
the best of our knowledge, it handles the largest 
triple set to date (7-fold larger than largest previous 
effort). Taking 14.7 million triples as input, a com-
plete run with one CPU core takes about a day.  
 
 
 

                                                                                           
1 We use the term synonymy broadly as defined in Section 3. 
2 A cluster of relation phrases can, however, act as a whole as 
the phrase cluster for 2 different relations in SNE. However, 
this only accounts for 4.8% of the polysemous cases. 

2 Related Work 

Unsupervised relation extraction (URE) algorithms 
(Hasegawa et al., 2004; Chen et al., 2005; Shinya-
ma and Sekine, 2006) collect pairs of co-occurring 
entities as relation instances, extract features for 
instances and then apply unsupervised clustering 
techniques to find the major relations of a corpus. 
These UREs rely on tagging a predefined set of 
argument types, such as Person, Organization, and 
Location, in advance. Yao et al. 2011 learns fine-
grained argument classes with generative models, 
but they share the similar requirement of tagging 
coarse-grained argument types. Most UREs use a 
quadratic clustering algorithm such as Hierarchical 
Agglomerate Clustering (Hasegawa et al., 2004, 
Shinyama and Sekine, 2006), K-Means (Chen et 
al., 2005), or both (Rosenfeld and Feldman, 2007); 
thus they are not scalable to very large corpora.  

As the target domain shifts to the web, new 
methods are proposed without requiring predefined 
entity types. Resolver (Yates and Etzioni, 2007) 
resolves objects and relation synonyms. Kok and 
Domingos (2008) proposed Semantic Network Ex-
tractor (SNE) to extract concepts and relations. 
Based on second-order Markov logic, SNE used a 
bottom-up agglomerative clustering algorithm to 
jointly cluster relation phrases and argument enti-
ties. However, both Resolver and SNE require 
each entity and relation phrase to belong to exactly 
one cluster. This limits their ability to handle poly-
semous relation phrases. Moreover, SNE only uses 
features in the input set of relation instances for 
clustering, thus it fails to group many relevant in-
stances. Resolver has the same sparseness problem 
but it is not affected as much as SNE because of its 
different goal (synonym resolution).  

As the preprocessing instance-detection step for 
the problem studied in this paper, open IE extracts 
relation instances (in the form of triples) from the 
open domain (Etzioni et al., 2004; Banko et al., 
2007; Fader et al., 2011; Wang et al. 2011). For 
efficiency, they only use shallow features. Reverb 
(Fader et al., 2011) is a state-of-the-art open do-
main extractor that targets verb-centric relations, 
which have been shown in Banko and Etzioni 
(2008) to cover over 70% of open domain rela-
tions. Taking their output as input, algorithms have 
been proposed to resolve objects and relation syn-
onyms (Resolver),  extract semantic networks 
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(SNE), and map extracted relations into an existing 
ontology (Soderland and Mandhani, 2007).  

Recent work shows that it is possible to con-
struct semantic classes and sets of similar phrases 
automatically with data-driven approaches. For 
generating semantic classes, previous work applies 
distributional similarity (Pasca, 2007; Pantel et al., 
2009), uses a few linguistic patterns (Pasca 2004; 
Sarmento et al., 2007), makes use of structure in 
webpages (Wang and Cohen 2007, 2009), or com-
bines all of them (Shi et al., 2010). Pennacchiotti 
and Pantel (2009) combines several sources and 
features. To find similar phrases, there are 2 close-
ly related tasks: paraphrase discovery and recog-
nizing textual entailment. Data-driven paraphrase 
discovery methods (Lin and Pantel, 2001; Pasca 
and Dienes, 2005; Wu and Zhou, 2003; Sekine, 
2005) extends the idea of distributional similarity 
to phrases. The Recognizing Textual Entailment 
algorithms (Berant et al. 2011) can also be used to 
find related phrases since they find pairs of phrases 
in which one entails the other.  

To efficiently cluster high-dimensional datasets, 
canopy clustering (McCallum et al., 2000) uses a 
cheap, approximate distance measure to divide da-
ta into smaller subsets, and then cluster each subset 
using an exact distance measure. It has been ap-
plied to reference matching. The second phase of 
WEBRE applies the similar high-level idea of par-
tition-then-cluster for speeding up relation cluster-
ing. We design a graph-based partitioning 
subroutine that uses various types of evidence, 
such as shared hypernyms.  

3 Problem Analysis 

The basic input is a collection of relation instances 
(triples) of the form <ent1, ctx, ent2>. For each tri-
ple, ctx is a relational phrase expressing the rela-
tion between the first argument ent1 and the second 
argument ent2. An example triple is <Obama, win 
in, NY>. The triples can be generated by an open 
IE extractor such as TextRunner or Reverb. Our 
goal is to automatically build a list of relations 
𝑅 = {< ent1, 𝑐𝑡𝑥, ent2 >} ≈ 3 < 𝐶1,𝑃,𝐶2 >  where P 
is the set of relation phrases, and 𝐶1  and  𝐶2  are 
two argument classes. Examples of triples and rela-
tions R (as Type B) are shown in Figure 1. 
                                                           
3 This approximately equal sign connects 2 possible represen-
tations of a relation: as a set of triple instances or a triple with 
2 entity classes and a relation phrase class. 

The first problem is the polysemy of relation 
phrases, which means that a relation phrase ctx can 
express different relations in different triples. For 
example, the meaning of be the currency of in the 
following two triples is quite different: <Euro, be 
the currency of, Germany> and <authorship, be 
the currency of, science>. It is more appropriate to 
assign these 2 triples to 2 relations “a currency is 
the currency of a country” and “a factor is im-
portant in an area” than to merge them into one. 
Formally, a relation phrase ctx is polysemous if 
there exist 2 different relations < 𝐶1,𝑃,𝐶2 >  and 
< 𝐶1

′,𝑃′,𝐶2
′ > where 𝑐𝑡𝑥 ∈ 𝑃 ∩ 𝑃′. In the previ-

ous example, be the currency of  is polysemous 
because it appears in 2 different relations.  

Polysemy of relation phrases is not uncommon. 
We generate clusters from a large sample of triples 
with the assistance of a soft clustering algorithm, 
and found that around 22% of relation phrases can 
be put into at least 2 disjoint clusters that represent 
different relations. More importantly, manual in-
spection reveals that some common phrases are 
polysemous. For example, be part of can be put 
into a relation “a city is located in a country” when 
connecting Cities to Countries, and another rela-
tion “a company is a subsidiary of a parent com-
pany” when connecting Companies to Companies. 
Failure to handle polysemous relation phrases fun-
damentally limits the effectiveness of an algorithm. 
The WEBRE algorithm described later explicitly 
handles polysemy and synonymy of relation 
phrases in its first and second phase respectively. 

The second problem is the “synonymy” of rela-
tion instances. We use the term synonymy broadly 
and we say 2 relation instances are synonymous if 
they express the same semantic relation between 
the same pair of semantic classes. For example, 
both <Euro, be the currency used in, Germany> 
and <Dinar, be legal tender in, Iraq> express the 
relation <Currencies, be currency of, Countries>. 
Solving this problem requires grouping synony-
mous relation phrases and identifying argument 
semantic classes for the relation.  

Various knowledge sources can be derived from 
the source corpus for this purpose. In this paper we 
pay special attention to incorporating various se-
mantic resources for relation extraction. We will 
show that these semantic sources can significantly 
improve the coverage of extracted relations and the  
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Figure 1. Overview of the WEBRE algorithm (Illustrated with examples sampled from experiment results). The tables and rec-
tangles with a database sign show knowledge sources, shaded rectangles show the 2 phases, and the dotted shapes show the sys-
tem output, a set of Type A relations and a set of Type B relations. The orange arrows denote resources used in phase 1 and the 
green arrows show the resources used in phase 2. 
 

best performance is achieved when various re-
sources are combined together.  

4 Mining Relations from the Web 

We first describe relevant knowledge sources, and 
then introduce the WEBRE algorithm, followed by 
a briefly analysis on its computational complexity.  

4.1 Knowledge Sources 

Entity similarity graph We build two similarity 
graphs for entities: a distributional similarity (DS) 
graph and a pattern-similarity (PS) graph. The DS 
graph is based on the distributional hypothesis 
(Harris, 1985), saying that terms sharing similar 
contexts tend to be similar. We use a text window 
of size 4 as the context of a term, use Pointwise 
Mutual Information (PMI) to weight context fea-
tures, and use Jaccard similarity to measure the 
similarity of term vectors. The PS graph is gener-
ated by adopting both sentence lexical patterns and 
HTML tag patterns (Hearst, 1992; Kozareva et al., 
2008; Zhang et al., 2009; Shi et al., 2010). Two 
terms (T) tend to be semantically similar if they co-
occur in multiple patterns. One example of sen-
tence lexical patterns is (such as | including) 
T{,T}* (and|,|.). HTML tag patterns include tables, 
dropdown boxes, etc. In these two graphs, nodes 
are entities and the edge weights indicate entity 
similarity. In all there are about 29.6 million nodes 
and 1.16 billion edges. 

Hypernymy graph Hypernymy relations are 
very useful for finding semantically similar term 
pairs. For example, we observed that a small city 
in UK and another small city in Germany share 
common hypernyms such as city, location, and 
place. Therefore the similarity between the two 
cities is large according to the hypernymy graph, 
while their similarity in the DS graph and the PS 
graph may be very small. Following existing work 
(Hearst, 1992, Pantel & Ravichandran 2004; Snow 
et al., 2005; Talukdar et al., 2008; Zhang et al., 
2011), we adopt a list of lexical patterns to extract 
hypernyms. The patterns include NP {,} (such as) 
{NP,}* {and|or} NP, NP (is|are|was|were|being) 
(a|an|the) NP, etc. The hypernymy graph is a bi-
partite graph with two types of nodes: entity nodes 
and label (hypernym) nodes. There is an edge (T, 
L) with weight w if L is a hypernym of entity T 
with probability w. There are about 8.2 million 
nodes and 42.4 million edges in the hypernymy 
graph. In this paper, we use the terms hypernym 
and label interchangeably. 
Relation phrase similarity: To generate the pair-
wise similarity graph for relation phrases with re-
gard to the probability of expressing the same 
relation, we apply a variant of the DIRT algorithm 
(Lin and Pantel, 2001). Like DIRT, the paraphrase 
discovery relies on the distributional hypothesis, 
but there are a few differences: 1) we use stemmed 
lexical sequences (relation phrases) instead of de-
pendency paths as phrase candidates because of the 
very large scale of the corpus. 2) We used ordered 

1030



pairs of arguments as features of phrases while 
DIRT uses them as independent features. We em-
pirically tested both feature schemes and found 
that using ordered pairs results in likely para-
phrases but using independent features the result 
contains general inference rules4. 

4.2 WEBRE for Relation Extraction 

WEBRE consists of two phases. In the first 
phase, a set of semantic classes are discovered and 
used as argument classes for each relation phrase. 
This results in a large collection of relations whose 
arguments are pairs of semantic classes and which 
have exactly one relation phrase. We call these 
relations the Type A relations. An example Type A 
relation is <{New York, London…}, be locate in, 
{USA, England, …}>. During this phase, polyse-
mous relation phrases are disambiguated and 
placed into multiple Type A relations. The second 
phase is an efficient algorithm which groups simi-
lar Type A relations together. This step enriches 
the argument semantic classes and groups synon-
ymous relation phrases to form relations with mul-
tiple expressions, which we called Type B 
relations. Both Type A and Type B relations are 
system outputs since both are valuable resources 
for downstream applications such as QA and Web 
Search. An overview of the algorithm is shown in 
Figure 1. Here we first briefly describe a clustering 
subroutine that is used in both phases, and then 
describe the algorithm in detail. 

To handle polysemy of objects (e.g., entities or 
relations) during the clustering procedure, a key 
building block is an effective Multi-Membership 
Clustering algorithm (MMClustering). For simplic-
ity and effectiveness, we use a variant of Hierar-
chical Agglomerative Clustering (HAC), in which 
we first cluster objects with HAC, and then reas-
sign each object to additional clusters when its 
similarities with these clusters exceed a certain 
threshold5. In the remainder of this paper, we use 
{C} = MMClustering({object}, SimFunc, α) to rep-
resent running MMClustering over a set of objects, 
                                                           
4 For example, be part of  has ordered argument pairs <A, B> 
and <C, D>, and be not part of has ordered argument pairs 
<A, D> and <B, C>. If arguments are used as independent 
features, these two phrases shared the same set of features {A, 
B, C, D}. However, they are inferential (complement relation-
ship) rather than being similar phrases. 
5 This threshold should be slightly greater than the clustering 
threshold for HAC to avoid generating duplicated clusters. 

with threshold α to generate a list of clusters {C} of 
the objects, given the pairwise object similarity 
function SimFunc. Our implementation uses HAC 
with average linkage since empirically it performs 
well. 

Discovering Type A Relations The first phase 
of the relation extraction algorithm generates Type 
A relations, which have exactly one relation phrase 
and two argument entity semantic classes. For each 
relation phrase, we apply a clustering algorithm on 
each of its two argument sets to generate argument 
semantic classes. The Phase 1 algorithm processes 
relation phrases one by one. For each relation 
phrase ctx, step 4 clusters the set {ent1} using 
MMClustering to find left-hand-side argument se-
mantic classes {C1}. Then for each cluster C in 
{C1}, it gathers the right-hand-side arguments 
which appeared in some triple whose left hand-
side-side argument is in C, and puts them into 
{ent2’}. Following this, it clusters {ent2’} to find 
right-hand-side argument semantic classes. This 
results in pairs of semantic classes which are ar-
guments of ctx. Each relation phrase can appear in 
multiple non-overlapping Type A relations. For 
example, <Cities, be part of, Countries> and 
<Companies, be part of, Companies> are different 
Type A relations which share the same relation 
phrase be part of. In the pseudo code, SimEntFunc 
is encoded in the entity similarity graphs.  

 

Algorithm Phase 1: Discovering Type A relations 
Input:  set of triples T={<ent1, ctx, ent2>} 
 entity similarity function SimEntFunc 
 Similarity threshold α 
Output:  list of Type A relations {<C1, ctx, C2>} 
Steps:  
01. For each relation phrase ctx 
02.     {ent1, ctx, ent2} = set of triples sharing ctx 
03.     {ent1} = set of ent1 in {ent1, ctx, ent2} 
04.     {C1} = MMClustering({ent1}, SimEntFunc, α) 
05.     For each C in { C1} 
06.         {ent2’} = set of 𝑒𝑛𝑡2 𝑠. 𝑡.∃< 𝑒𝑛𝑡1, 𝑐𝑡𝑥, 𝑒𝑛𝑡2 > ∈

 𝑇 ⋀ 𝑒𝑛𝑡1 ∈ 𝐶1 
07.         {C2} = MMClustering({ent2’}, SimEntFunc, α) 
08.         For each C2 in {C2} 
09.             Add <C1, ctx, C2> into {<C1, ctx, C2>} 
10. Return {<C1, ctx, C2>} 

 

    Discovering Type B Relations  The goal of 
phase 2 is to merge similar Type A relations, such 
as <Cities, be locate in, Countries> and <Cities, 
be city of, Countries>, to produce Type B relations, 
which have a set of synonymous relation phrases 
and more complete argument entity classes. The 
challenge for this phase is to cluster a very large 
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set of Type A relations, on which it is infeasible to 
run a clustering algorithm that does pairwise all 
pair comparison. Therefore, we designed an evi-
dence-based partition-then-cluster algorithm. 

The basic idea is to heuristically partition the 
large set of Type A relations into small subsets, 
and run clustering algorithms on each subset. It is 
based on the observation that most pairs of Type A 
relations are not similar because of the sparseness 
in the entity class and the relation semantic space. 
If there is little or no evidence showing that two 
Type A relations are similar, they can be put into 
different partitions. Once partitioned, the clustering 
algorithm only has to be run on each much smaller 
subset, thus computation complexity is reduced.  

The 2 types of evidence we used are shared 
members and shared hypernyms of relation argu-
ments. For example, 2 Type A relations 
r1=<Cities, be city of, Countries> and r2=<Cities, 
be locate in, Countries> share a pair of arguments 
<Tokyo, Japan>, and a pair of hypernyms <”city”, 
“country”>. These pieces of evidence give us hints 
that they are likely to be similar. As shown in the 
pseudo code, shared arguments and hypernyms are 
used as independent evidence to reduce sparseness. 

 

Algorithm Phase 2: Discovering Type B relations 
Input:  Set of Type A relations {r}={<C1, ctx, C2>} 
 Relation similarity function SimRelationFunc 
 Map from entities to their hypernyms: Mentity2label 
 Similarity threshold α 

Edge weight threshold µ 
Variables G(V, E) = weighted graph in which V={r} 
Output:  Set of Type B relations {<C1, P, C2>} 
Steps:  
01. {<ent, {r’}>} = build  inverted index from argument 

ent to set of Type A relations {r’} on {<C1, ctx, C2>}  
02 {<l, {r’}>} = build  inverted index from hypernym l 

of arguments to set of Type A relations {r’} on {<C1, 
ctx, C2>} with map Mentity2label  

03. For each ent in {<ent, {r’}>} 
04.     For each pair of r1 and r2  s.t. 𝑟1 ∈ {𝑟′} ⋀ 𝑟2 ∈ {𝑟′}    
05.        weight_edge(<r1, r2>) += weight (ent) 
06. For each l in {<l, {r’}>} 
07.     For each pair of r1 and r2  s.t. 𝑟1 ∈ {𝑟′} ⋀ 𝑟2 ∈ {𝑟′}    
08.        weight_edge(<r1, r2>) += weight (l) 
09. For each edge <r1, r2> in G 
10.     If weight_edge(<r1, r2>) < µ 
11.         Remove edge <r1, r2> from G 
12. {CC}= DFS(G) 
13. For each connected component CC in {CC} 
14.     {<C1, ctx, C2>} = vertices in CC 
15. {<C1’, P’, C2’>} = MMClustering({<C1, ctx, C2>},  

  SimRelationFunc, α) 
16.     Add {<C1’, P’, C2’>} into {<C1, P, C2>} 
17. Return {<C1, P, C2>} 
 

Steps 1 and 2 build an inverted index from evi-
dence to sets of Type A relations. On the graph G 
whose vertices are Type A relations, steps 3 to 8 
set the value of edge weights based on the strength 
of evidence that shows the end-points are related. 
The weight of evidence E is calculated as follows: 

 

𝑤𝑒𝑖𝑔ℎ𝑡(𝐸) =
# 𝑠ℎ𝑎𝑟𝑒𝑑 𝑡𝑢𝑝𝑙𝑒𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝐸 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 

max(# 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐸 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛)  
 

The idea behind this weighting scheme is similar 
to that of TF-IDF in that the weight of evidence is 
higher if it appears more frequently and is less am-
biguous (appeared in fewer semantic classes during 
clustering of phase 1). The weighting scheme is 
applied to both shared arguments and labels. 

After collecting evidence, we prune (steps 9 to 
11) the edges with a weight less than a threshold µ 
to remove noise. Then a Depth-First Search (DFS) 
is called on G to find all Connected Components 
CC of the graph. These CCs are the partitions of 
likely-similar Type A relations. We run MMClus-
tering on each CC in {CC} and generate Type B  
relations (step 13 to step 16).  The similarity of 2 
relations (SimRelationFunc) is defined as follows: 

𝑠𝑖𝑚(< 𝐶1,𝑃,𝐶2 >, < 𝐶1′,𝑃′,𝐶2′ >) 
 

= �
0,     𝑖𝑓 𝑠𝑖𝑚(𝑃,𝑃′) <  𝜎

min�𝑠𝑖𝑚(𝐶1,𝐶1′), 𝑠𝑖𝑚(𝐶2,𝐶2′)� ,   𝑒𝑙𝑠𝑒   

4.3 Computational Complexity 

WEBRE is very efficient since both phases de-
compose the large-clustering task into much small-
er clustering tasks over partitions. Given n objects 
for clustering, a hierarchical agglomerative cluster-
ing algorithm requires 𝑂(𝑛2)  pairwise compari-
sons. Assuming the clustering task is split into 
subtasks of size 𝑛1, 𝑛2, …, 𝑛𝑘, thus the computa-
tional complexity is reduced to 𝑂(∑ 𝑛𝑖2𝑘

1 ). Ideally 
each subtask has an equal size of 𝑛/𝑘, so the com-
putational complexity is reduced to O(𝑛2/𝑘) , a 
factor of 𝑘 speed up. In practice, the sizes of parti-
tions are not equal. Taking the partition sizes ob-
served in the experiment with 0.2 million Type A 
relations as input, the phase 2 algorithm achieves 
around a 100-fold reduction in pairwise compari-
sons compared to the agglomerative clustering al-
gorithm. The combination of phase 1 and phase 2 
achieves more than a 1000-fold reduction in pair-
wise comparison, compared to running an agglom-
erative clustering algorithm directly on 14.7 
million triples. This reduction of computational 
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complexity makes the unsupervised extraction of 
relations on a large dataset a reality. In the experi-
ments with 14.7 million triples as input, phase 1 
finished in 22 hours, and the phase 2 algorithm 
finished in 4 hours with one CPU core. 

Furthermore, both phases can be run in parallel 
in a distributed computing environment because 
data is partitioned. Therefore it is scalable and effi-
cient for clustering a very large number of relation 
instances from a large-scale corpus like the web.  

5 Experiment 

Data preparation We tested WEBRE on re-
sources extracted from the English subset of the 
Clueweb09 Dataset, which contains 503 million 
webpages. For building knowledge resources, all 
webpages are cleaned and then POS tagged and 
chunked with in-house tools. We implemented the 
algorithms described in section 4.1 to generate the 
knowledge sources, including a hypernym graph, 
two entity similarity graphs and a relation phrase 
similarity graph. 

We used Reverb Clueweb09 Extractions 1.1 
(downloaded from reverb.cs.washington.edu) as 
the triple store (relation instances). It is the com-
plete extraction of Reverb over Clueweb09 after 
filtering low confidence and low frequency triples. 
It contains 14.7 million distinct triples with 3.3 
million entities and 1.3 million relation phrases. 
We choose it because 1) it is extracted by a state-
of-the-art open IE extractor from the open-domain, 
and 2) to the best of our knowledge, it contains the 
largest number of distinct triples extracted from the 
open-domain and which is publicly available. 
 

Evaluation setup The evaluations are organized as 
follows: we evaluate Type A relation extraction 
and Type B relation extraction separately, and then 
we compare WEBRE to its closest prior work 
SNE.  Since both phases are essentially clustering 
algorithms, we compare the output clusters with 
human labeled gold standards and report perfor-
mance measures, following most previous work 
such as Kok and Domingos (2008) and Hasegawa 
et al. (2004). Three gold standards are created for 
evaluating Type A relations, Type B relations and 
the comparison to SNE, respectively. In the exper-
iments, we set α=0.6, µ=0.1 and 𝜎=0.02 based on 
trial runs on a small development set of 10k rela-
tion instances. We filtered out the Type A relations 
and Type B relations which only contain 1 or 2 

triples since most of these relations are not differ-
ent from a single relation instance and are not very 
interesting. Overall, 0.2 million Type A relations 
and 84,000 Type B relations are extracted. 
 

Evaluating Type A relations To understand the 
effectiveness of knowledge sources, we run Phase 
1 multiple times taking entity similarity graphs 
(matrices) constructed with resources listed below: 
• TS: Distributional similarity based on the triple 

store. For each triple <ent1, ctx, ent2>, features 
of ent1 are {ctx} and {ctx ent2}; features of ent2 
are {ctx} and {ent1 ctx}. Features are weighted 
with PMI. Cosine is used as similarity measure.  

• LABEL: The similarity between two entities is 
computed according to the percentage of top 
hypernyms they share. 

• SIM: The similarity between two entities is the 
linear combination of their similarity scores in 
the distributional similarity graph and in the 
pattern similarity graph. 

• SIM+LABEL SIM and LABEL are combined. 
Observing that SIM generates high quality but 
overly fine-grained semantic classes, we modify 
the entity clustering procedure to cluster argu-
ment entities based on SIM first, and then fur-
ther clustering the results based on LABEL. 
The outputs of these runs are pooled and mixed 

for labeling. We randomly sampled 60 relation 
phrases. For each phrase, we select the 5 most fre-
quent Type A relations from each run (4×5=206 
Type A relations in all). For each relation phrase, 
we ask a human labeler to label the mixed pool of 
Type A relations that share the phrase: 1) The la-
belers7 are asked to first determine the major se-
mantic relation of each Type A relation, and then 
label the triples as good, fair or bad based on 
whether they express the major relation. 2) The 
labeler also reads all Type A relations and manual-
ly merges the ones that express the same relation. 
These 2 steps are repeated for each phrase. After 
labeling, we create a gold standard GS1, which 
contains roughly 10,000 triples for 60 relation 
phrases. On average, close to 200 triples are manu-

                                                           
6  Here 4 means the 4 methods (the bullet items above) of 
computing similarity. 
7 4 human labelers perform the task. A portion of the judg-
ments were independently dual annotated; inter-annotator 
agreement is 79%. Moreover, each judgment is cross-checked 
by at least one more annotator, further improving quality. 
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ally labeled and clustered for each phrase. This 
creates a large data set for evaluation.  

We report micro-average of precision, recall and 
F1 on the 60 relation phrases for each method. Pre-
cision (P) and Recall (R) of a given relation phrase 
is defined as follows. Here 𝑅𝐴 and 𝑅𝐴′  represents a 
Type A relation in the algorithm output and GS1, 
respectively. We use t for triples and s(t) to repre-
sent the score of the labeled triple t. s(t) is set to 
1.0, 0.5 or 0 for t labeled as good, fair and bad, 
respectively. 
 

𝑃 =
∑ ∑ 𝑠(𝑡) 𝑡∈𝑅𝐴  𝑅𝐴

∑ |𝑅𝐴|𝑅𝐴
, 𝑅 =

∑ ∑ 𝑠(𝑡) 𝑡∈𝑅𝐴  𝑅𝐴
∑ ∑ 𝑠(𝑡′) 𝑡′∈𝑅𝐴

′𝑅𝐴
′

 
 

The results are in table 1. Overall, LABEL per-
forms 53% better than TS in F-measure, and 
SIM+LABEL performs the best, 8% better than 
LABEL. Applying a simple sign test shows both 
differences are clearly significant (p<0.001). Sur-
prisingly, SIM, which uses the similarity matrix 
extracted from full text, has a F1 of 0.277, which is 
lower than TS. We also tried combining TS and 
LABEL but did not find encouraging performance 
compared to SIM+LABEL. 
 

Algorithm Precision Recall F1 
TS 0.842 (0.886) 0.266 0.388 

LABEL 0.855 (0.870) 0.481 0.596 
SIM 0.755 (0.964) 0.178 0.277 

SIM+LABEL 0.843 (0.872) 0.540 0.643 
 

Table 1. Phase 1 performance (averaged on multiple runs) of 
the 4 methods. The highest performance numbers are in bold. 
(The number in parenthesis is the micro-average when empty-
result relation phrases are not considered for the method). 
 

Among the 4 methods, SIM has the highest preci-
sion (0.964) when relation phrases for which it 
fails to generate any Type A relations are exclud-
ed, but its recall is low. Manual checking shows 
that SIM tends to generate overly fine-grained ar-
gument classes. If fine-grained argument classes or 
extremely high-precision Type A relations are pre-
ferred, SIM is a good choice. LABEL performs 
significantly better than TS, which shows that hy-
pernymy information is very useful for finding ar-
gument semantic classes. However, it has coverage 
problems in that the hypernym finding algorithm 
failed to find any hypernym from the corpus for 
some entities. Following up, we found that 
SIM+LABEL has similar precision and the highest 
recall. This shows that the combination of semantic 
spaces is very helpful. The significant recall im-
provement from TS to SIM+LABEL shows that 
the corpus-based knowledge resources significant-

ly reduce the data sparseness, compared to using 
features extracted from the triple store only. The 
result of the phase 1 algorithm with SIM+LABEL 
is used as input for phase 2. 
 

Evaluating Type B relations The goal is 2-fold: 
1) to evaluate the phase 2 algorithm. This involves 
comparing system output to a gold standard con-
structed by hand, and reporting performance; 2) to 
evaluate the quality of Type B relations. For this, 
we will also report triple-level precision. 
    We construct a gold standard GS28 for evaluat-
ing Type B relations as follows: We randomly 
sampled 178 Type B relations, which contain 1547 
Type A relations and more than 100,000 triples. 
Since the number of triples is very large, it is in-
feasible for labelers to manually cluster triples to 
construct a gold standard. To report precision, we 
asked the labelers to label each Type A relation 
contained in this Type B relation as good, fair or 
bad based on whether it expresses the same rela-
tion. For recall evaluation, we need to know how 
many Type A relations are missing from each Type 
B relation. We provide the full data set of Type A 
relations along with three additional resources: 1) a 
tool which, given a Type A relation, returns a 
ranked list of similar Type A relations based on the 
pairwise relation similarity metric in section 4, 2) 
DIRT paraphrase collection, 3) WordNet (Fell-
baum, 1998) synsets. The labelers are asked to find 
similar phrases by checking phrases which contain 
synonyms of the tokens in the query phrase. Given 
a Type B relation, ideally we expect the labelers to 
find all missing Type A relations using these re-
sources. We report precision (P) and recall (R) as 
follows. Here 𝑅𝐵  and 𝑅𝐵′  represent Type B rela-
tions in the algorithm output and GS2, respective-
ly. 𝑅𝐴  and 𝑅𝐴′  represent Type A relations. 𝑠(𝑅𝐴) 
denotes the score of 𝑅𝐴. It is set to 1.0, 0.5 and 0 
for good, fair or bad respectively.  
 

𝑃 =
∑ ∑ |𝑅𝐴|∙𝑠(𝑅𝐴) 𝑅𝐴∈𝑅𝐵𝑅𝐵

∑ ∑ |𝑅𝐴|  𝑅𝐴∈𝑅𝐵𝑅𝐵
, 𝑅 =

∑ ∑ |𝑅𝐴|∙𝑠(𝑅𝐴)  𝑅𝐴∈𝑅𝐵𝑅𝐵
∑ ∑ �𝑅𝐴

′ �𝑅𝐴
′ ∈𝑅𝐵

′𝑅𝐵
′

 
 

We also ask the labeler to label at most 50 ran-
domly sampled triples from each Type B relation, 
and calculate triple-level precision as the ratio of 
the sum of scores of triples over the number of  
                                                           
8 3 human labelers performed the task. A portion of the judg-
ments were independently dual annotated; inter-annotator 
agreement is 73%. Similar to labeling Type A relations, each 
judgment is cross-checked by at least one more annotator, 
further improving quality. 
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Argument 1 Relation phrase Argument 2 
marijuana, caffeine, nicotine… result in, be risk factor for, be major cause of… insomnia, emphysema, breast cancer,… 

C# 2.0, php5, java, c++, … allow the use of, also use, introduce the concept of… destructors, interfaces, template,… 
clinton, obama, mccain, … win, win in, take, be lead in,… ca, dc, fl, nh, pa, va, ga, il, nc,… 

Table 3. Sample Type B relations extracted. 
 

sampled triples. We use 𝑃𝑖𝑛𝑠 to represent the preci-
sion calculated based on labeled triples. Moreover, 
as we are interested in how many phrases are 
found by our algorithm, we also include 𝑅𝑝ℎ𝑟𝑎𝑠𝑒, 
which is the recall of synonymous phrases. Results 
are shown in Table 2.  
 

Interval P R (𝑅𝑝ℎ𝑟𝑎𝑠𝑒) F1 𝑃𝑖𝑛𝑠 count 
[3, 5) 0.913 0.426 (0.026) 0.581 0.872 52149 

[5, 10) 0.834 0.514 (0.074) 0.636 0.863 21981 
[10, 20) 0.854 0.569 (0.066) 0.683 0.883 6277 
[20, 50) 0.899 0.675 (0.406) 0.771 0.894 2630 

[50, +∞) 0.922 0.825 (0.594) 0.871 0.929 1089 
Overall 0.897 0.684 (0.324) 0.776 0.898 84126 

Table 2. Performance for Type B relation extraction. The first 
column shows the range of the maximum sizes of Type A 
relations in the Type B relation. The last column shows the 
number of Type B relations that are in this range. The number 
in parenthesis in the third column is the recall of phrases.  
 

The result shows that WEBRE can extract Type B 
relations at high precision (both P and 𝑃𝑖𝑛𝑠). The 
overall recall is 0.684. Table 2 also shows a trend 
that if the maximum number of Type A relation in 
the target Type B relation is larger, the recall is 
better. This shows that the recall of Type B rela-
tions depends on the amount of data available for 
that relation. Some examples of Type B relations 
extracted are shown in Table 3. 

  

Comparison with SNE We compare WEBRE’s 
extracted Type B relations to the relations extract-
ed by its closest prior work SNE9. We found SNE 
is not able to handle the 14.7 million triples in a 
foreseeable amount of time, so we randomly sam-
pled 1 million (1M) triples 10 and test both algo-
rithms on this set. We also filtered out result 
clusters which have only 1 or 2 triples from both 
system outputs. For comparison purposes, we con-
structed a gold standard GS3 as follows: randomly 
select 30 clusters from both system outputs, and 
then find similar clusters from the other system 
output, followed by manually refining the clusters 
                                                           
9 Obtained from alchemy.cs.washington.edu/papers/kok08 
10 We found that SNE’s runtime on 1M triples varies from 
several hours to over a week, depending on the parameters. 
The best performance is achieved with runtime of approxi-
mately 3 days. We also tried SNE with 2M triples, on which 
many runs take several days and show no sign of convergence. 
For fairness, the comparison was done on 1M triples. 

by merging similar ones and splitting non-coherent 
clusters. GS3 contains 742 triples and 135 clusters. 
We report triple-level pairwise precision, recall 
and F1 for both algorithms against GS3, and report 
results in Table 4. We fine-tuned SNE (using grid 
search, internal cross-validation, and coarse-to-fine 
parameter tuning), and report its best performance. 

 

Algorithm Precision Recall F1 
WEBRE 0.848 0.734 0.787 

SNE 0.850 0.080 0.146 
 

Table 4. Pairwise precision/recall/F1 of WEBRE and SNE.  
 

Table 4 shows that WEBRE outperforms SNE 
significantly in pairwise recall while having similar 
precision. There are two reasons. First, WEBRE 
makes use of several corpus-level semantic sources 
extracted from the corpus for clustering entities 
and phrases while SNE uses only features in the 
triple store. These semantic resources significantly 
reduced data sparseness. Examination of the output 
shows that SNE is unable to group many triples 
from the same generally-recognized fine-grained 
relations. For example, SNE placed relation in-
stances <Barbara, grow up in, Santa Fe> and 
<John, be raised mostly in, Santa Barbara> into 2 
different clusters because the arguments and 
phrases do not share features nor could be grouped 
by SNE’s mutual clustering. In contrast, WEBRE 
groups them together. Second, SNE assumes a re-
lation phrase to be in exactly one cluster. For ex-
ample, SNE placed be part of in the phrase cluster 
be city of and failed to place it in another cluster be 
subsidiary of. This limits SNE’s ability to placing 
relation instances with polysemous phrases into 
correct relation clusters. 

It should be emphasized that we use pairwise 
precision and recall in table 4 to be consistent with 
the original SNE paper. Pairwise metrics are much 
more sensitive than instance-level metrics, and pe-
nalize recall exponentially in the worst case11 if an 
algorithm incorrectly splits a coherent cluster; 
therefore the absolute pairwise recall difference 
                                                           
11 Pairwise precision and recall are calculated on all pairs that 
are in the same cluster, thus are very sensitive. For example, if 
an algorithm incorrectly split a cluster of size N to a smaller 
main cluster of size N/2 and some constant-size clusters, pair-
wise recall could drop to as much as ¼ of its original value. 
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should not be interpreted as the same as the in-
stance-level recall reported in previous experi-
ments. On 1 million triples, WEBRE generates 
12179 triple clusters with an average size12 of 13 
while SNE generate 53270 clusters with an aver-
age size 5.1. In consequence, pairwise recall drops 
significantly. Nonetheless, at above 80% pairwise 
precision, it demonstrates that WEBRE can group 
more related triples by adding rich semantics har-
vested from the web and employing a more general 
treatment of polysemous relation phrases.  On 1M 
triples, WEBRE finished in 40 minutes, while the 
run time of SNE varies from 3 hours to a few days. 

6 Conclusion 

We present a fully unsupervised algorithm 
WEBRE for large-scale open-domain relation ex-
traction. WEBRE explicitly handles polysemy rela-
tions and achieves a significant improvement on 
recall by incorporating rich corpus-based semantic 
resources. Experiments on a large data set show 
that it can extract a very large set of high-quality 
relations. 
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