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Abstract—Peer-to-Peer (P2P) applications have been con-
suming an increasingly significant fraction of Internet band-
width. They are becoming a financial burden to Internet Service
Providers (ISPs), creating hot spots in the Internet, and causing
potential performance degradation to other applications. As
a result, there has been increasing tensions between P2P
applications and network service providers. In this paper,
we propose a framework called SODA for P2P applications
to be self-adaptive and optimize their demands in order to
more efficiently utilize network resources. Through preliminary
experiments using two representative P2P applications, we
demonstrate that SODA can effectively reduce bandwidth
consumption by adapting the demands among peers.
Keywords-Peer-to-Peer; self adaptation; optimization;

I. INTRODUCTION

There have been increasing tensions between Internet Ser-
vice Providers (ISPs) and Peer-to-Peer (P2P) applications.
P2P applications (P2Ps for short) are largely oblivious to the
underlying network infrastructure, leading to wide spread of
P2P traffic in the Internet. As they become more and more
popular, P2Ps consume an increasingly higher portion of
network bandwidth. Studies (see,e.g., [18]) estimate that the
aggregated traffic of all P2Ps contributes to about 60-70%
of the traffic in the Internet and about 80% of the traffic in
the last-mile providers’ networks.

The increasing P2P traffic has severe negative implications
for overall network performance. On the one hand, P2Ps can
generate a large amount of traffic. According to [22], a P2P
application client consumes 90 times more bandwidth than
an average Web client. P2P traffic can dramatically increase
network utilization, and results in performance degradation
to other applications (see, e.g., [14], [31]). On the other
hand, the increasing P2P traffic is becoming a financial
burden to ISPs. Most ISPs pay their providers for the transit
services to connect to the Internet. Being largely oblivious to
network structures and policies, P2P clients in an ISP may
upload a substantial amount of data to others in the provider
networks. Hence, the ISP in question may actually become
a content provider to its network providers and be charged
unnecessarily [22], [23]. The world-wide extra costs due to
P2P traffic are estimated to be in excess of e 500M per
annum [18].

ISPs have clear incentives to manage P2P traffic. ISPs
operate their networks, typically with complex internal struc-
tures, to achieve certain objectives. A common objective is to
balance traffic through traffic engineering (see, e.g., [7], [8],
[20]). ISPs oftentimes estimate traffic matrices and deter-
mine routing based on them according to network policies.

However, these information is generally not made available
to P2Ps due to privacy concerns. As a result, P2Ps usually
take the underlying networks as a black box with “bit pipes”
inside it, being oblivious to network internal structures and
objectives (i.e., network-oblivious). The obliviousness can
easily result in ISPs’ effort being negated if P2Ps optimize
their own application-level objectives.

Recently researchers have recognized these challenges
and proposed novel approaches (see, e.g., [1], [4], [6], [27],
[28], [29]). In particular, Choffnes et al. [6] proposed the
Ono framework for P2Ps to adjust themselves based on
the redirection information obtained from existing content
delivery networks (CDNs). Aggarwal et al. [1] and Xie
et al. [28] proposed the Oracle framework and the P4P
framework, respectively, to coordinate P2Ps and ISPs and
jointly optimize the performance for both sides.

These proposals are clearly novel and beneficial; however,
they also have many disadvantages. On the one hand, the
Ono approach requires no support from the ISPs, but it
heavily relies on inferring the status of the underlying
networks from CDN redirection information. However, ISP
objectives are not explicitly considered, and the inferred
information can be biased, as the operations and objectives
of CDNs can be significantly different from those of ISPs.
Recent studies (see, e.g., [12]) show that when decisions
for content distribution by CDNs and decisions for traffic
engineering by ISPs are made separately, as how CDNs
and ISPs work today in the Internet, it leads to sub-optimal
equilibrium. The equilibrium can still be sub-optimal even
when network conditions are accurately and timely made
available to CDNs. In addition, a lot of important network
status information cannot be easily inferred via the CDN
redirection information (e.g., link virtual capacities [9],
traffic engineering policies). On the other hand, the P4P-
like approaches require explicit collaborations of both ISPs
and P2P applications. However, many ISPs are reluctant
to share their sensitive information in the collaboration,
although some are actively involved in the past P4P field
tests. Many P2Ps are actively pursuing collaboration with
ISPs, but reluctant to migrate to the P4P framework, due
to the potential risks of being too much dependent on the
information ISPs provided via P4P. Another more serious
risk is that the P4P framework is not able to differentiate
harmful configurations (either intentional by malicious ISPs
or unintentional by benign ISPs).

In this paper, we propose a framework called SODA:
self optimization via demand adaptation, to address the
challenges. In particular, the framework not only allows

IEEE P2P'09 - Sept. 9-11, 2009

978-1-4244-5067-1/09/$26.00 ©2009 IEEE 163



P2Ps to be collaborative without relying too much on
information provided by ISPs, but also allows easy mi-
gration to the P4P-like approaches when such information
is available and trusted in the future. To a certain extent,
our framework combines the benefits of both P4P-like and
Ono-like frameworks. In the short run, it allows P2Ps to
be proactive in solving the tensions before the P4P-like
frameworks are widely deployed; in the long run, it allows
easy integration with the P4P-like frameworks once they
are available. More importantly, it can be potentially used
by P2Ps to differentiate harmful P4P-like information from
beneficial ones and make intelligent decisions accordingly.

In our framework, we seek to exploit the tremendous
flexibility that P2P applications have in forming peering
relationships and choosing the replicas to download from.
Similar to the P4P framework, we formulate the objectives
of both ISPs and P2Ps explicitly, and formulate the demand
adaptation as a constrained optimization problem. In the
framework, P2Ps are self-adaptive, using active measure-
ments to collect vital information about the underlying net-
works; these information will be used as inputs to solve the
optimization problem. P4P-like information, when available
and trusted, can be used to replace the inferred information
and make better, more fine-grained decisions. Thus, our
framework enables P2Ps to shape their peering relations as
well as traffic distribution in order to both provide a certain
level of performance guarantee for P2Ps and lower the traffic
costs for ISPs.

We summarize our contributions as follows:
• we propose a framework to achieve the benefits of

previously proposed P4P-like and Ono-like approaches,
without explicit participation of ISPs. The framework
considers typical objectives of both P2Ps and ISPs, and
enables P2Ps to take a proactive role in the coordination.

• we leverage information collected from publicly available
sources and active measurements, to exploit the tremen-
dous flexibility of P2Ps. Our framework is also open and
can leverage the fine-grained information via P4P when
available.

• we implement the framework in two popular P2P file
sharing applications, and demonstrate its effectiveness
through Internet experiments.
The rest of the paper is organized as follows. In Section II,

we introduce two popular P2P file sharing applications
used in our studies. In Section III, we present the SODA
framework for self optimization through demand adaptation.
In Section IV, we describe how we implement the proposed
framework in two P2P applications. In Section V, we present
our evaluations methodologies. In Section VI, we present our
evaluations results. In Section VII, we discuss related works.
We conclude the paper in Section VIII.

II. PEER-TO-PEER FILE SHARING SYSTEMS

We consider two representative P2P file sharing appli-
cations in this paper. The first application is BitTorrent. In
BitTorrent, peers are self-organized to form a swarm to share
files. The swarm is typically bootstrapped by one or multiple
tracker servers. New peers join the swarm by registering with
the tracker server and obtaining a randomly selected subset

of active peers in the swarm. Then they establish connections
to the selected peers and exchange chunks of the shared files.
Peers are referred to as seeds when they have a completed
copy of the shared files, and are referred to as leechers when
otherwise.

The second application is Maze [30], a hybrid Napster-like
P2P file sharing application. It is designed and developed
by a research team in Peking University. Its user base is
approximately 4 million. The number of simultaneous online
users is typically 100,000 in Maze. There are approximately
200 to 300 million files shared by Maze users.

The Maze back-end servers are divided into three func-
tional components. The first component is user servers,
responsible for user management including user registration
and login. The second component is central servers, respon-
sible for building index for keywords and MD5 hash values
of shared files. The third component is a cluster of query
servers as a search engine to support file lookup and search.

It is common in Maze that a shared file has multiple
replicas. As in other P2P applications, Maze clients can
simultaneously download different portions of a shared
file from multiple replicas. Maze uses a two-phase query
operation to look up files and their replicas. The first phase
is keyword-based query. In this phase, users supply keyword
strings to the search engine, and results are grouped by their
MD5 hash values. Results with the same MD5 hash value
are merged into one search result when sent back to users.
The second phase is hash-based query, which starts when the
users choose a search result returned in the first phase. In
the second phase, Maze clients automatically query Maze
servers using the MD5 hash value to get currently active
replicas in the system.

III. SELF OPTIMIZATION VIA DEMAND ADAPTATION

In this section, we first discuss the design rationale, then
present our framework and describe how to exploit the
flexibility of P2Ps.
A. Rationale

Our framework formulates the demand adaptation as a
constrained optimization problem. Specifically, we explicitly
take into account both ISP and P2P objectives. We would
like to improve ISPs’ performance, constrained by guaran-
teed P2P performance.

The rationale is that rather than optimize P2P performance
alone and totally ignore ISP objectives, which is a common
practice by most P2P application today, we believe that both
objectives should be be taken into account to make P2P and
ISPs co-exist well. We choose to improve ISPs’ performance
as the optimization objective because P2Ps typically have
extremely good flexibility in shaping their traffic demands.
In addition, ISPs’ network resources are treated as common
goods, it is clearly beneficial if P2Ps optimize themselves
and avoid the tragedy of the commons.
B. A Framework for Demand Adaptation

We now describe the framework rigorously. We consider
a set of clients of a P2P applications in a given ISP. We
denote the ISP’s network topology by G= (V,E), where V
and E are the set of nodes and directed links, respectively,
in the underlying network. Let d denote a traffic demand
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matrix, and D the set of feasible demand matrices of a P2P
swarm. Here a demand matrix consists of the traffic volumes
for all pairs of P2P clients. Note that D is used to facilitate
the presentation only. In practice we do not need to know
every single element in this set precisely.

We consider an abstract cost function, viewed by P2Ps,
to characterize the cost incurred to the ISP by a given P2P
traffic demand d. We denote the function by cISP(d). We
also consider an abstract utility function, denoted by u(d)
for a given P2P demand d. When given a set of feasible
demands D , a P2P application usually needs to guarantee a
certain level of desirable utility u(D). Note that the utility
is a characterization of P2P performance, and u(D) is used
as a lower bound.

The objective of the demand adaptation is to distribute
P2P demands, by choosing a demand matrix from the
feasible set, so that not only the P2P performance can be
guaranteed to achieve the lower bound, but also the impacts
on ISP can be optimized. This is formulated in Figure 1.

mind cISP(d)
subject to u(d) ≥ u(D),

d ∈ D.
Figure 1. General SODA framework.

P2P typically needs more network information to compute
cISP(d). However, such information is usually not made
available to P2P, as it reflects internal structures of the un-
derlying network and is considered as confidential by ISPs.
Thus, P2P should leverage various measurement techniques
to construct the necessary information if possible at all.

Information such as network topology G and its routing
can be effectively obtained through various inference ap-
proaches (e.g., [15], [16], [24]). Such inferred information
is the best available information that P2P can obtain alone
without the ISP’s cooperation. These information are still
valuable even when disclosed by ISPs. For instance, it can
potentially be used by P2Ps to correlate the inferred and the
officially disclosed information, identify misleading infor-
mation (e.g., due to ISP misconfigurations or maliciousness)
and make intelligent decisions accordingly.

In this paper, we consider the bit-distance product (BDP),
denoted by cBDPISP , as the ISP cost function viewed by P2Ps.
BDP is the sum of the distances each bit traverses from the
source to the destination, i.e.,

cBDPISP = ∑
i∈V, j∈S(i)

ti j pi j,

where pi j is the distance from node j to i, and ti j the volume
of traffic flowing from node j to node i. We denote by S(i)
the set of replicas that i can download from.

The distance pi j can be either the number of intermediate
links or the sum of geographical distances of each individual
link along the path from j to i. This information can be
inferred through aforementioned active measurements. Note
that in the P4P context, pi j is the P4P distance from i to j,
and such information is made available by the ISP via P4P
only. In the SODA framework, pi j can be adjusted to favor
replicas in the same PoP, in the same regional area, or in
the same ISP network. For instance, the P2P can assign a
larger value to replicas in another ISP in order to limit the
traffic crossing the ISP network boundary.

To make it concrete, we next describe two instances of
the framework using Maze and BitTorrent as examples.

C. Maze Demand Adaptation
We next consider the P2P utility and constraints in Maze.

Due to the search-based dynamics of file sharing behaviors,
new demands may arrive before old demands complete. To
make it conceptually clean, we divide the demands into two
categories: existing demands Zi j and new arrival demands
Ti j. Note that it may not be necessary to satisfy every new
arrival demands all of the time.

The P2P utility is the total satisfiable traffic volume of
the new demands. The P2P constraints are that (1) at each
node i, at least a specified proportion (denoted by α) of new
demands should be satisfied; and (2) to maintain diversity
in P2P demands and peering relationships, clients at node i
and j should exchange a minimum level of traffic (denoted
by β) when feasible. Typically for all i, ∑ j∈S(i)β< α. Here
we treat α as the lower bound on P2P throughput, and β
the minimum percent of feasible traffic. In other words, a
subset of the new arrival demands should be satisfied in order
to meet the lower bound of P2P performance and diversity
requirements. Figure 2 shows the formulation.

min ∑
i, j∈S(i)

(ti j +Zi j)pi j (1)

subject to ∀i, ∑
j∈S(i)

ti j ≥ α ∑
j∈S(i)

Ti j, (2)

∀i, j ∈ S(i), ti j ≥ βTi j, (3)
∀i, j ∈ S(i), ti j ≥ 0. (4)

Figure 2. BDP SODA for Maze.

Note that α and β are pre-determined system variables
and have significant impacts on both ISP and P2P. We refer
to α as the performance tolerance factor (or tolerance factor
for short) and β as the diversity factor hereafter.

D. BitTorrent Demand Adaptation
We note that BitTorrent clients do not have to connect to

a specific set of peers, but can rather obtain the distributed
content from any set of active peers.

We compute the maximum P2P throughput for a Bit-
Torrent swarm using the model proposed in [28]. Specif-
ically, we denote by ai and bi the aggregated upstream
and downstream access capacity of all peers at underlying
node i. The access capacity information can be obtained
from either the P2P clients themselves or the knowledge of
network access link capacities for each peer. Note that ai
and bi also takes into account the user-imposed bandwidth
limit. Thus, the objective is to maximize the total throughput
∑ j $=i ti j, subject to the aggregated downstream and upstream
bandwidth constraints ∑ j $=i ti j ≤ bi,∀i ∈V and ∑ j $=i t ji ≤ ai,
∀i∈V , where ti j ≥ 0,∀i, j ∈V . We denote by t∗i j the optimal
solution to the above problem, and by T ∗

i =∑ j t∗i j the optimal
aggregated throughput of all clients at node i.

The realization of SODA in BitTorrent is to address the
throughput considerations of BitTorrent swarms and the
traffic load concerns of the ISP. The formulation using
cBDPISP as objective can be derived similarly, by replacing the
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constraint (2) in Figure 2 with the following:
∀i, ∑

j∈S(i)
ti j ≥ αT ∗

i .

E. Distributed Solution

It is desirable to have a distributed approach to solving the
demand adaptation problems in the preceding subsections,
since many P2P applications are highly decentralized. In
such scenarios, no individual servers will be appropriate for
making centralized decisions.

We note that the above formulations have convex objec-
tives and linear constraints. It is straightforward to apply
classical distributed algorithms to solve such optimization
problems [2]. We adopt the feasible steepest descent algo-
rithm and update the demands at each step converging to
the optimal solution as follows:

ti j(n+1) = [ti j(n)−δ(n)pi j]+,

where δ(n) is the step size at n-th step, and [·]+ is the projec-
tion onto the feasible set {ti j|ti j ≥ 0,∑ j∈S(i) ti j ≥α∑ j∈S(i)Ti j}
for Maze (similarly, {ti j|ti j ≥ 0,∑ j∈S(i) ti j ≥αT ∗

i } for BitTor-
rent).

In practice we implement the algorithm for Maze as
follows. Consider a client at node i. We first sort the remote
replicas in ascending order of distances from i, and assign a
minimum fraction of demand β∑ j Ti j to each remote replica
at node j. We then divide the remainder of the demand (i.e.,
for a given i, (α−∑ j∈S(i)β)∑ j∈S(i)Ti j) equally to the remote
replicas closest to node i.

F. Extension of ISP Cost Functions

The framework can be extended to include other abstract
cost functions viewed by P2Ps. One example is maximum
volume of link traffic cMVLISP .

We denote by Ii j(e) an indicator variable, which equals
1 when link e is on the path from i to j, and 0 otherwise.
The path is determined by the ISP’s routing algorithm. Ii j(e)
can be inferred, e.g., via the approach in [16]. Note that the
indicator variable is a generic representation of the routing
algorithm, and it frees us from the specific details of routing
algorithms.

Specifically, the constrained optimization problem can be
formulated as follows:

min maxe∈E ∑
i∈V, j∈S(i)

ti jIi j(e)

subject to (2),(3),(4).
Figure 3. MVL SODA for Maze.

By minimizing the maximum link traffic volume, P2Ps
can distribute their traffic evenly inside the network. Simi-
larly, we can apply the steepest descent approach to derive
iterative distributed algorithms to adapt P2P demands con-
verging to the optimal solution.

IV. DESIGN AND IMPLEMENTATION

In this section, we describe our implementations of the
SODA framework for Maze and BitTorrent.

A. Network topology
We collect the PoP-level topologies for two networks. The

first network is CERNET. We take the BGP RIB dumps and
measurement studies by the CERNET BGPView Project [3]
to construct the topology. The CERNET topology consists
36 PoP nodes in major cities of China, and 56 bi-directional
links. The second network is Abilene. Its topology is made
publicly available by Internet2 Network NOC [11]. Abilene
consists of 11 PoP nodes and 28 bidirectional links. For
each link in both networks, we also obtain the capacity
and weight. Based on the link weights, we are able to
compute the routing. However, the detailed topology (with
link capacity and weight information) is used in post-
experiment analysis only.

We also use the BGP RIB dumps to collect the IP prefixes
that are originated at each PoP node in both topologies.
Thus, given an IP address, we are able to look up which
PoP node it originates from.

B. SODA Implementation in Maze
We adopt a centralized SODA implementation in Maze

since many clients do not automatically install the updated
SODA patch. However, the centralized implementation is
only to facilitate the experiments, and it should be fairly
straightforward to implement the distributed solution at the
client side.

In our implementation, when the index server receives
the hash-based search queries issued by clients, it first
looks up the locations of all active replicas for each hash
value, and forwards them to the SODA server. The SODA
server regularly examines the forwarded search queries with
associated locations of replicas, and solves the optimization
problems described in the preceding section. In other words,
The SODA server periodically selects a subset of replicas
for each incoming query, and returns the chosen replicas to
the index server. Then the index server returns them to the
clients. The SODA server can be considered as a filter to
prune locations of replicas for each incoming query. Note
that the SODA server only takes input from the second phase
in the Maze query process.

C. SODA Implementation in BitTorrent
We implement the SODA server in BitTorrent tracker

server. In our implementation, the tracker server estimates
the aggregated upstream and downstream access capacity,
based on the reported peer activity information. Then it
computes the desired optimal throughput by solving the
throughput maximization problem described in the preced-
ing section. The tracker server next computes the desired
demand matrix. Then it maps the desired demand matrix to
peer connectivity as follows.

Once the ti j values have been computed, we derive the
weights wi j = ti j/∑ j ti j. A peer at node i would then use
these weights to make randomized peering connections.
Specifically, a peer at node i would select peers at j with
probability wi j. This scheme operates at a coarser grain.
In our implementation, we do not achieve strict bounds on
traffic between underlying nodes, but instead control only
the number of connections in a probabilistic manner.
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V. EVALUATION METHODOLOGY

We use real Internet experiments to evaluate the effective-
ness of SODA.

A. P2P Data Collection
We collect the client activity logs in experiments as

follows. We modify the BitTorrent client program to report
data exchange statistics in 5-minute intervals. Maze client
has built in such activity report functionality but at a coarser
granularity. Once Maze query server receives a query from
a client, it forwards the query to the SODA server. While
in BitTorrent, each record is aggregated transferred traffic
volumes between a pair of peers. Therefore we can derive
real-time traffic demands.

We then derive the traffic demands for each pair of PoP
nodes from the logs. The traffic demand is estimated for each
5-minute interval in each day. We assume for simplicity that
the download rate is the average traffic rate with respect to
each session (i.e., total number of downloaded bytes divided
by the session length). Then for each 5-minute interval, we
compute the total number of bytes downloaded by all sources
at one PoP node from all destinations at another PoP, which
we refer to as a 5-minute traffic demand matrix. To this end,
we convert the download log to a set of 5-minute traffic
demand matrices.

Based on the P2P traffic demand and the detailed network
topology, we compute the amount of traffic and utilization
for each link, the total amount of traffic in the network, and
the sum of bit-distance product for each demand.

B. Internet Experiment
We integrate the SODA server in Maze and run Internet

experiments in the CERNET network. We run multiple sets
of Maze Internet experiments using the inferred CERNET
topology in 2-hour durations. To evaluate SODA intensively,
we intentionally choose to run the experiments in the busiest
hours (in the late afternoon and night) in multiple days.
During those time slots, the number of online users and total
traffic in Maze is the highest in a day. We then collect and
compute the traffic demands from the logs, and compute the
link utilization using the detailed topology accordingly. We
refer to the original Maze as Native and Maze with SODA
as SODA for short.

We also integrate the SODA server with the BitTorrent
tracker server and run Internet experiments in the Abilene
network. We set up an initial seed server hosting a 10MB
file, run a separate tracker server, and run BitTorrent clients
from 106 PlanetLab nodes in Abilene network to download
the file. All clients join the swarm in a short time period to
emulate the flash crowd. Each experiment lasts 20 minutes.
We run the experiments in late nights when the load on
Abilene and PlanetLab nodes is relatively light. We run the
experiments multiple times and compute the averages.

VI. EVALUATIONS

In this section, we first present Maze measurement results,
as they illustrate the undesirable impacts P2Ps can have on
ISPs. We then present preliminary experimental results for
both Maze and BitTorrent.

A. Maze Measurements
We collect and analyze logs of Native Maze to understand

the impacts it has on the underlying network. The logs
used in analysis were collected from September 1st, 2007
to October 3rd, 2007.

We investigate how the underlying network links are
utilized by Native Maze. We compute the utilization for
each link and each day. We also compute the average and
maximum utilization for all links across all days.

Figure 4 plots the utilization of two most heavily used
links. The capacity of both links is 2.5Gbps. We observe
that the maximum utilization can be as high as 14% resulted
by Maze alone. The average utilization during busy hours
is approximately 5% and 2% for the two links, respectively.
We emphasize that these link loads are resulted by Maze
alone. This clearly shows that Native Maze can creates very
high loads on certain links, thus potentially increasing ISP
operational costs and degrading the performance of other
applications that share those links.
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Figure 4. Utilization of two most tight links.

Figure 5 plots the statistics of utilization of all CERNET
links. We observe that although the average link utilization
is relatively low, some links are heavily used by Maze. This
clearly shows that in Maze, the traffic is not distributed
evenly. Native Maze does not optimize for traffic distribu-
tion, thus it is likely to create hot-spots in the underlying
networks. With SODA server explicitly optimizing traffic
distribution, we believe that the utilization of the underlying
networks can be improved.
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Figure 5. Statistics of link utilization.

B. Maze Internet Experiments
We now present the results of Maze Internet experiments

with integrated SODA server. We configure the SODA server
and run the experiments with α varying from 0.2 to 0.8 and
β fixed to 0.01. Here we present the experimental results
when α being 0.4, 0.6, and 0.8 only.
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Figure 7. BitTorrent: summary of improvement.

Figure 6 summarizes the improvement of SODA when
varying the factor α and negative impacts on client download
time.

Figure 6(a) plots the result of the improvement on bit-
distance product. We compute the sum of bit-distance prod-
uct by aggregating all traffic volume between any pair of
PoP nodes in the underlying networks. We observe that
SODA improves bit-distance product. Note that in these
experiments, SODA indirectly improves BDP by optimizing
link utilization which results in evenly distributing and
localizing the traffic in the network, and as a side effect,
this usually leads to lower BDP.

Figure 6(b) plots the amount of improvement on link
utilization at different levels of tolerance factor. We observe
that SODA can significantly improve the utilization of links
in the underlying networks. When α is small, the total
amount of traffic allowed by SODA is also small, thus
the performance improvement on link utilization is larger.
When α increases, the amount of improvement decreases
accordingly. Thus aggressive tolerance factor (e.g., α= 0.8)
leads to only marginal improvement. The experimental re-
sults suggest that an appropriate tolerance factor ranges from
0.4 to 0.6.

Figure 6(c) plots the cumulative download completion
time when α = 0.6. We observe that SODA results in the
download completion time approximately the same as Native
Maze. For downloads lasting less than 600 seconds, the
completion time is almost the same; for downloads lasting
longer, SODA results in less than 10% longer completion
time. Thus the performance degradation to Maze with SODA
is relatively small. The results with smaller α values are

consistent; thus we do not present them here.

C. BitTorrent Internet Experiments
We next present the results of BitTorrent experiments in

the Abilene network. The tolerance factor α is set to 0.6
and β set to 0.01 in the experiments. We collect BitTorrent
client logs and compute the amount of traffic volumes for
all links in Abilene network. We also compute the sum of
bit-distance products. Figure 7 summarizes the results.

Figure 7(a) compares SODA against Native BitTorrent on
the sum of bit-distance product. We observe that SODA
results in significantly lower bit-distance product. In the
2nd and 3rd intervals where peers are exchanging large
amount of traffic, the improvement is as high as 75%.
However, in the starting and ending intervals, SODA has
less improvement as data exchange among peers is no longer
extensive. The results suggest that most of traffic is localized
to local peers in the same PoP or close-by PoPs when peers
are extensively exchanging data.

Figure 7(b) shows significant improvement on the traffic
volume on Abilene links. SODA has improvement as high
as 60% when traffic exchange is extensive in the 2nd and
3rd intervals. The improvement is marginal in the starting
and ending intervals. Note that the traffic volume numbers
on links can be directly translated into link utilization.

Figure 7(c) shows the improvement on the download com-
pletion time. We observe that SODA results in faster com-
pletion. The median improvement is approximately 20%,
and some peers can see improvement as high as 40%. The
reason is that optimizing BDP leads to peers favoring shorter
connections and local data exchange; as a result, the shorter
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connections usually achieve higher throughput than long
connections, and the speed of piece propagation is faster
among locally clustered peers.

Figure 8 plots the ratio between bit-distance product and
total traffic volume. This ratio is a good indicator of how
well traffic is localized across the underlying network. We
observe that Native BitTorrent results in significantly higher
ratio. We further analyze the logs and find that the traffic
between pairs of PoP nodes are approximately equalized in
Native BitTorrent, regardless of how far or close two PoP
nodes are in terms of path length. This suggests that Native
BitTorrent is not able to distribute the traffic in the desirable
way. This is resulted by random peer selection implemented
in Native BitTorrent, leading to network-oblivious traffic
distribution among all pairs of PoP nodes.
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We also observe that the ratio increases initially and
then decreases; however, in SODA experiments, the ratio
is almost constant. The reason is that in Native BitTorrent
experiments, peers are more densely connected. Initially
only a small number of clients who peer with the seed
are able to download a portion of the file. Gradually, more
clients have downloaded chunks to share with others, and
they start to exchange data extensively with neighbors.
However, traffic is randomly spreaded across the network,
resulting in increasing bit-distance product. The ratio grad-
ually decreases when clients completes downloading. The
results suggest that SODA can efficiently localize the P2P
traffic and achieve a significantly more efficient utilization
of network resources.

VII. RELATED WORK

Researchers have extensively studied how to design P2P
applications to share network resources and address the
increasing tensions. The literature can be largely categorized
into four lines.

The first line of research is adaptation based on congestion
control. Researchers have investigated how to design TCP-
like congestion control protocol for “lower-than-best-effort”
services (e.g., TCP-LP [13] and TCP Nice [25]). This ap-
proach can be applied to P2P design to reduce contention to
best-effort traffic. However, it does not address the tensions
between ISPs and P2Ps directly; instead, it relies end-to-end
congestion control mechanisms to fairly share bandwidth on
network links. This approach is complementary to ours.

The second line of research is P2P traffic caching. Re-
searchers have studied the feasibility of various P2P traffic

caching and showed that P2P traffic caching would poten-
tially reduce wide-area bandwidth demands of P2P systems
dramatically (see, e.g., [10], [22], [21], [26]). There are
also commercial P2P caching devices available (e.g., [5]).
However, many ISPs are reluctant to be involved in the
P2P content distribution due to legal concerns. Further, P2P
traffic caching is usually specific to individual applications,
meaning that the caching devices have to implement a P2P
protocol before being able to cache its traffic.

The third line of research is P2P self-adaptation (see, e.g.,
[4], [6], [19]). In particular, Choffnes et al. [6] proposed
the Ono framework for P2Ps to infer closeness of peers via
the redirection information of existing content delivery net-
works, and adapt themselves accordingly. These approaches
are clearly novel and promising; however, they do not
consider ISP objectives and policies explicitly. For example,
in the Ono approach, the redirection information may reflect
the objectives of CDNs only, while ISP objectives may not
well aligned with CDN objectives, as suggested by [12].
In addition, the effectiveness of this approach depends
heavily on factors such as CDN coverage, deployment and
granularity.

The fourth line of research is explicit coordination be-
tween ISPs and P2Ps (see, e.g., [1], [4], [27], [28]). In
particular, Aggarwal et al. [1] and Xie et al. [27], [28]
independently proposed the Oracle framework and the P4P
framework, respectively. The Oracle framework ranks P2P
clients according to ISPs’ internal metrics, while the P4P
framework distributes p-distance information explicitly de-
rived from ISP objectives and constraints (e.g., intradomain
and interdomain policy). Both approaches are largely domi-
nated by ISPs, as ISPs have to deploy them and make them
available to P2Ps. Otherwise, it would be difficult for P2Ps
to obtain the ISP information. However, the disadvantages
of both approaches are: (1) only when a sufficient number of
ISPs deploy these frameworks can P2Ps make practical and
effective use of them; (2) even both frameworks can preserve
privacy to some degree, many ISPs are still conservative
and reluctant to disclose sensitive information; and (3) in
addition to lack of trust by P2P, ISPs may provide harmful
information (either intentionally or unintentionally).

Our approach differs from the above approaches in that
we provide a P2P-dominant framework to achieve benefits
of both Ono-like and P4P-like approaches. We explicitly
take into account the objectives of both ISPs and P2Ps, and
address the disadvantages of the P4P-like approaches. Our
approach is flexible: it can not only work when P4P-like
network information is unavailable, but also easily integrate
the P4P-like network information once it is available, with-
out fundamentally changing peer behaviors. Our approach is
also potentially helpful for P2P to differentiate harmful ISP
information and make intelligent decisions.

VIII. CONCLUSION

We propose a framework called SODA for peer-adaptive
demand optimization. The framework can be leveraged to
achieve the benefits of recent P4P and Ono proposals. In-
spired by these proposals, we seek to exploit the tremendous
flexibility that P2P nodes have in choosing the replicas to
download from in Maze and forming peering relationships
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in BitTorrent. We implement the framework in these two
popular P2P file sharing applications. Although preliminary,
the Internet experiments demonstrate its effectiveness even
without the strong requirement for network information as
needed in P4P-like frameworks.

There are multiple venues for future works. First, the
experiments are still preliminary. Second, the tolerance
factor α controls how aggressive P2P optimizes itself. In
addition, there exists conflict of interest between ISPs and
P2Ps, and different alpha values will favor different interest
groups. However, there still lacks thoroughly understanding
of the trade-offs in P2P and ISP performance. Third, we
require that network information be inferred and collected
when such information is not available. Significant pro-
gresses have been made towards this direction in the past
few years (e.g., [15], [16], [17], [24]); however, this may
still result in overhead in SODA, especially when such
inference infrastructure is not widely available yet. In fully
decentralized P2Ps without trackers, such overhead may be
even higher. Fourth, the inferred network information may
not be as accurate. We will investigate the impacts of the
inaccuracy on P2P and ISP performance as well as whether
multiple P2Ps implementing SODA co-exist well in one ISP
network. Last, we will investigate when network information
is available from both inference and ISPs, how P2P should
correlate them and identify harmful ISP configurations. We
will also extend the framework to handle multiple ISPs in
interdomain settings.
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