
Machine Learning Methods
for Text Classification
Bonan Min

bonanmin@gmail.com

Some slides are based on class materials from Thien Huu Nguyen, Dan Jurafsky,
James H. Martin, Dhruv Batra, Fei-Fei Li, Justin Johnson

Recap on Text Classification
An example: opinion mining / sentiment analysis

◦ Classify whether a document expresses a positive or negative opinion (or no
opinion) about an object or topic

Different Types of Text Classification
Topics (e.g., politics, sports, science): by far the most frequent case, its
applications are ubiquitous

Sentiment (e.g., positive, negative, neutral): useful in market research,
online reputation management, customer relationship management,
social sciences, political sciences

Languages (i.e., language identification): useful in query processing with
search engines

Authors (i.e., authorship attribution): useful in forensics and
cybersecurity

Machine Learning (ML)
for Text Classification
ML classifiers

◦ A generic (task-independent) learning algorithm to train a classifier from a set of
labeled examples

◦ The classifier learns, from these labeled examples, the characteristics of a new text
should have in order to be assign to some label

Advantages
◦ Annotating/locating training examples is cheaper than writing rules

◦ Easier updates to changing conditions (annotate more data with new labels for new
domains)

(This lecture) Focus on Bag-of-Words models to introduce ML approaches
◦ Also introduce a minimum amount of shallow features

ML for Text Classification

Training examples are pairs of input text and the corresponding labels: 𝐷 =
𝑋1, 𝑦1 , 𝑋2, 𝑦2 , … , 𝑋𝑁, 𝑦𝑁

Disjoint datasets used:
◦ Training: estimate model parameters
◦ Development: choose the best hyperparameters; prevent overfitting in training
◦ Test dataset: report model performance

A sequence of words 𝑋 = 𝑤1, ⋯ , 𝑤𝑛 A label set y ∈ 𝑌 = {𝑐1, … , 𝑐𝑘}

ML for Text Classification
From the training dataset 𝐷 = 𝑋1, 𝑦1 , 𝑋2, 𝑦2 , … , 𝑋𝑁, 𝑦𝑁 , learn a
model/classifier/function that can predict the label for a new input text
(the classification problem):

𝑓: 𝑋 → 𝑦 ∈ 𝑌

In a probabilistic formulation, this is done by computing the probability
distribution over the possible classes in Y given the input document X:

𝑃 𝑦 𝑋

Then the label for a new document X is
ො𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦|𝑋)

ML for Text Classification
ML models covered in this lecture

◦ Naïve Bayes classifiers

◦ Multi-class logistic regression

◦ Multi-layer perceptron

◦ Convolutional Neural Networks

Naive Bayes Classification (Recap)
Identify most likely class

s = argmax P (t | W)
t є {pos, neg}

Use Bayes’ rule



argmaxt P(t |W)
argmaxt P(W |t)P(t)

P(W)

argmaxt P(W |t)P(t)

argmaxt P(w1
,...,wn |t)P(t)

argmaxt P(w
i
|t)P(t)

i


Based on the naïve assumption of
independence of the word probabilities

Training (Recap)
Estimate probabilities from the training corpus (N documents) using
maximum likelihood estimators

P (t) = count (docs labeled t) / N

P (wi | t) =

count (docs labeled t containing wi)
count (docs labeled t)

Text Classification: Flavors (Recap)
Bernoulli model: use presence (/ absence) of a term in a
document as feature

◦ formulas on previous slide

Multinomial model: based on frequency of terms in
documents:

◦ P (t) = total length of docs labeled t

total size of corpus

◦ P (wi | t) = count (instances of wi in docs labeled t)
total length of docs labeled t

Better performance on long documents

The Importance of Smoothing (Recap)
Suppose a glowing review SLP2 (with lots of positive words) includes
one word, “mathematical”, previously seen only in negative reviews

P (positive | SLP2) = 0

because P (“mathematical” | positive) = 0

The maximum likelihood estimate is poor when there is very little data

We need to ‘smooth’ the probabilities to avoid this problem

Add-One (Laplace) Smoothing (Recap)
A simple remedy is to add 1 to each count
◦ for the conditional probabilities P(w | t): Add 1 to each c(w, t)

◦ Increase the denominator by number of unique words (|V|). That is,
add |V| to c(t) to keep them as probabilities (sum up to 1)

෍

𝑤∈𝑉

𝑝 𝑤 𝑡 = 1

Features for Text Classification
Recall that a document is represented as a sequence of words 𝑋 =
𝑤1, ⋯ , 𝑤𝑛

More features can be included
◦ Words in the title

◦ Author, length, date of document

◦ Sender, recipient of email

◦ Noun phrases or n-grams

◦ Number of punctuation marks

◦ …

Choices of features depend on the task
◦ Sentiment: punctuation marks are useful e.g., ?, !, !!!

◦ Topic: titles are more important than the body

Features for Text Classification
Feature representation: Given a document/text, we extract the features,
then represent them in a vector

Normalization is helpful
◦ E.g., subtracting the mean from an individual raw score and then dividing the

difference by the standard deviation

Can involve conjunction features, e.g., n-grams, combination of a feature
and a label, to emphasize the co-occurrence of the features (thus highly
interdependent)

Feature engineering usually requires linguistic intuition and analysis

The dog chased the cat.

Feature engineering

Features for Text Classification
Naïve Bayes can be extended to include these features

However, the more features we include, the more likely they have
dependencies with each other (violating the independency assumption
of Naïve Bayes)

◦ We need methods that can handle the inter-dependency between features,
thus allowing us to introduce as many features as we see fit to reflect our
intuition about the problem

Maximum Entropy
Also known as Multi-Class Logistic Regression* or MaxEnt; it is a
discriminative classification model:

Logistic regression (binary):
◦ Pass 𝑧 through the sigmoid/logistic function 𝜎 𝑧

◦ Parameters : weight vector 𝒘 ∈ 𝑹𝑛 and the bias vector 𝒃 ∈ 𝑹

𝑃(𝑦 = 1|𝑥) = 𝜎 𝒘 ∙ 𝒙 + 𝒃 =
1

1 + ⅇ−(𝒘∙𝒙+𝒃)

Decision boundary is 0.5:

ො𝑦 = ቊ
1, if 𝑃 𝑦 = 1 𝑥 > 0.5
0, othⅇrwisⅇ

ො𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦P(y|x)

* On the equivalence of MaxEnt and multi-class logistic regression: http://www.win-
vector.com/dfiles/LogisticRegressionMaxEnt.pdf

http://www.win-vector.com/dfiles/LogisticRegressionMaxEnt.pdf

Maximum Entropy
Parameters : weight vector 𝒘 ∈ 𝑹𝑛×𝑐 and the bias vector 𝒃 ∈ 𝑹𝑐

◦ 𝒘𝒊𝒋 corresponds to the weight for i-th feature with regard to the j-th label

The likelihood vector for the types of Y is computed as
𝐴 = 𝒘𝑇𝒙 + 𝒃 = [𝑎1, 𝑎2, … , 𝑎𝑐]

The likelihood vector is then normalized using the softmax function (a
generalization of the sigmoid) to obtain a probability distribution over
the classes:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴 = [
𝑒𝑎1

𝑒𝑧
,
𝑒𝑎2

𝑒𝑧
, … ,

𝑒𝑎𝑐

𝑒𝑧
]

𝑍 =෍

𝑖=1

𝑐

𝑒𝑎𝑖

Loss Function: Cross-Entropy
Loss function: expresses how close the classifier output ො𝑦 is to the correct
output 𝑦 for a 𝑥

◦ Minimize the loss function = maximize the fit

Cross entropy loss
◦ Prefers the correct class labels of the training examples to be more likely
◦ This is called conditional maximum likelihood estimation: choose the parameters

w,b that maximize the log probability of the true y labels in the training data
given the observations x.

◦ The resulting loss function is the negative log likelihood loss, generally called the
cross-entropy loss

Assuming C classes, the cross-entropy loss is the following:

For a single label 𝑦 = 𝑖, this is 𝐿 = −log(
𝑒𝑎𝑖

𝑒𝑧
)

𝐿 𝜃 = 𝒘, 𝒃 = −෍
𝑖=1

𝑐

1 𝑦 = 𝑖 log𝑃 𝑦 = 𝑖 𝑥 = −෍
𝑖=1

𝑐

1 𝑦 = 𝑖 log෍
𝑖=1

𝑐 𝑒𝑎𝑖

𝑒𝑧

Training: Gradient Descent
to Minimize the Loss
In 1-dimension, the derivative of a function

In multiple dimensions, the gradient is the vector of (partial derivatives)
along each dimension

The slope in any direction is the dot product of the direction with the
gradient

The direction of steepest descent is the negative gradient

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Gradient Descent
For a loss function L 𝜃 =

1

𝑁
σ𝑖=1
𝑁 𝐿𝑖 𝑥𝑖 , 𝑦𝑖 , 𝜃

At step t+1, Model parameters can be updated with the following rule:
𝜃𝑡+1 = 𝜃𝑡 − 𝛾𝛻𝜃𝐿 𝜃𝑡

In which

𝜃𝑡 : model parameters at time t (𝜃0 is the initial parameter)

𝛾 : learning rate

Both 𝜃0 and 𝛾 are critical for convergence

Stochastic Gradient Descent (SGD)
Problem: Full sum is expensive when N is large; also the complexity
grows linearly with N (size of the dataset)

𝛻𝜃𝐿 𝜃 =
1

𝑁
σ𝑖=1
𝑁 𝛻𝜃𝐿𝑖 𝑥𝑖 , 𝑦𝑖; 𝜃

Approximate sum using a minibatch of examples

𝜃𝑡+1 = 𝜃𝑡 − 𝛾𝛻𝜃𝐿 𝑥𝑖
𝑡 , 𝑦𝑖

𝑡; 𝜃𝑡
◦ Per-iteration complexity is independent of N

◦ The stochastic process {𝜃𝑡|𝑡 = 1, … , } depends on the examples (𝑥𝑖
𝑡 , 𝑦𝑖

𝑡)
picked randomly at each iteration

Advanced Optimizers
Momentum

Adagrad

Adadelta

Adam

RMSprop

…

Some are adaptive learning rate methods (e.g., by leveraging second-order
derivatives)

Most are built-in in Deep Learning (DL) toolkits, e.g., TensorFlow, PyTorch
◦ Also, state-of-the-art DL toolkits supports Automatic differentiation

Layers in a Multi-Layer Perceptron
(MLP) / Neural Networks
So far we have only considered the logistic unit: h = 𝜎 𝒘𝑻𝒙 + 𝑏 where
h ∈ 𝑅, 𝑥 ∈ 𝑅𝑝, 𝑤 ∈ 𝑅𝑝 and 𝑏 ∈ 𝑅

Units can be composed in parallel to form a layer with q outputs:

𝐡 = 𝝈 𝒘𝑻𝒙 + 𝒃

where h ∈ 𝑅𝑞 , 𝑥 ∈ 𝑅𝑝, 𝑤 ∈ 𝑅𝑝×𝑞 , 𝑏 ∈ 𝑅𝑞, and 𝝈(∙) performs element-wise
sigmoid function

𝒙 matmul add

𝒘 𝒃

𝝈 𝐡

Multi-Layer Perceptron (MLP) /
Neural Nets
Similarly, layers can be composed in series, such that

𝒉0 = 𝒙

𝒉1 = 𝜎 𝑾1
𝑇𝒉0 + 𝒃1

…

𝒉𝐿 = 𝜎 𝑾𝐿
𝑇𝒉𝐿−1 + 𝒃𝐿

𝑓 𝑥; 𝜃 = ො𝑦 = ℎ𝐿, where 𝜃 denotes the model parameters
{𝑊𝑘 , 𝑏𝑘 , … |𝑘 = 1,… , 𝐿}

This model is the multi-layer perceptron, a.k.a., fully connected
feedforward network

Homework: what if we don’t use the non-linear functions?

Activation Functions

Computational Graph

𝒙 matmul add

𝒘1 𝒃𝟏

𝝈 𝒉𝟏 matmul add

𝒘2 𝒃𝟐

𝝈 𝒉𝟐 matmul add

𝒘𝐿 𝒃𝑳

𝝈 𝒉𝑳…

Layer 1 Layer 2 Layer L

Final Layer: Classification
Binary classification:

◦ The width q of the last layer L is set to 1, which results in a single output
ℎ𝐿 ∈ [0,1] that models the probability 𝑃(𝑦 = 1|𝒙)

Multi-class classification:
◦ The sigmoid activation 𝜎 in the last layer needs to be generalized to produce

a (normalized) vector of probability estimates 𝑃 𝑦 = 𝑖 𝒙 , this leads to the
softmax function in which its i-th output is defined as

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 𝑖 =
ⅇxp(𝑧𝑖)

σ𝑗=1
𝑐 ⅇxp(𝑧𝑗)

for i = 1,… , 𝑐

Automatic Differentiation
To minimize 𝐿 𝜃 with SGD, we need the gradient 𝛻𝜃𝐿 𝜃𝑡

Therefore, we require the evaluation of the (total) derivatives
𝑑𝐿

𝑑𝑾𝑘
,
𝑑𝐿

𝑑𝒃𝑘

Of the loss 𝐿with respect to all model parameters 𝑾𝑘 , 𝒃𝑘, for 𝑘 =
1,… , 𝐿

These derivatives can be evaluated automatically from the
computational graphs of L using automatic differentiation

Chain Rule

Let us consider a 1-d output composition 𝑓 ∘ 𝑔, such that
𝑦 = 𝑓 𝑢

𝑢 = 𝑔 𝑥 = (𝑔1 𝑥 ,… , 𝑔𝑚 𝑥)

𝒙 𝒈𝟑 𝒇 𝒚𝒖𝟑

… …

𝒈𝟐 𝒖𝟐

𝒈𝟏 𝒖𝟏

𝒈𝒎 𝒖𝒎

Chain Rule

Let us consider a 1-d output composition 𝑓 ∘ 𝑔, such that
𝑦 = 𝑓 𝑢

𝑢 = 𝑔 𝑥 = (𝑔1 𝑥 ,… , 𝑔𝑚 𝑥)

The chain rule states that 𝑓 ∘ 𝑔 ′ = 𝑓′ ∘ 𝑔 𝑔′

For the total derivative, the chain rule generalizes to

d𝑦

d𝑥
= ෍

𝑘=1

𝑚
𝜕𝑦

𝜕𝑢𝑘

d𝑢𝑘
d𝑥

𝒙 𝒈𝟑 𝒇 𝒚𝒖𝟑

… …

𝒈𝟐 𝒖𝟐

𝒈𝟏 𝒖𝟏

𝒈𝒎 𝒖𝒎

Reverse Automatic Differentiation
A Neural Network is a composition of differential functions, the total
derivatives of the loss can be evaluated backward, by applying the chain
rule recursively over its computational graph

The implementation is called reverse-mode automatic differentiation

An Example
Let us consider a simplified 2-layer MLP with a cross-entropy loss:

𝑓 𝒙;𝑾1,𝑾2 = 𝜎 𝑾2
𝑇𝜎 𝑾1

𝑇𝒙

𝐿 𝑦, ො𝑦;𝑾1,𝑾2 = 𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡(𝑦, ො𝑦)

for 𝒙 ∈ 𝑹𝒑, 𝑦 ∈ 𝑹,𝐖𝟏 ∈ 𝑹𝒑×𝒒 and 𝑾𝟐 ∈ 𝑹𝒒

In the feedforward pass, intermediate values are all computed from
inputs to outputs, which results in the automatic computational graph
below:

𝒙 matmul 𝝈 𝒖𝟐𝒖𝟏

𝒘1

matmul

𝒘2

𝝈 ෝ𝒚𝒖𝟑

𝒚

Cross_ent 𝑳

An Example
The total derivative can be computed through a backward pass, by
walking through all paths from outputs to parameters in the
computational graph and accumulating the terms.

For example, for
d𝐿

d𝑾1
, we have

d𝐿

d𝑾1
=
𝜕𝐿

𝜕 ො𝑦

d ො𝑦

d𝑾1
,

d ො𝑦

d𝑾1
= …

𝒙 matmul 𝝈 𝒖𝟐𝒖𝟏

𝒘1

matmul

𝒘2

𝝈 ෝ𝒚𝒖𝟑

𝒚

Cross_ent 𝑳

An Example
Let us zoom in on the computation of the output ො𝑦 and its derivatives
with respect to 𝑾1:

◦ Forward pass: values 𝑢1, 𝑢2, 𝑢3 and ො𝑦 are computed by traversing the graph
from inputs to outputs given 𝒙,𝐖1, and 𝐖2

◦ Backward pass: by the chain rule, we have
dො𝑦

d𝑾1
=

𝜕 ො𝑦

𝜕𝑢3

𝜕𝑢3
𝜕𝑢2

𝜕𝑢2
𝜕𝑢1

𝜕𝑢1
𝜕𝑾1

=
𝜕𝜎 𝑢3

𝜕𝑢3

𝜕𝜎 𝑢2

𝜕𝑢2

𝜕𝜎 𝑢1

𝜕𝑢1

𝜕𝑾1
𝑇𝑢1

𝜕𝑾1

Note that evaluating the partial derivatives requires the intermediate
values computed forward

𝒙 matmul 𝝈 𝒖𝟐𝒖𝟏

𝒘1

matmul

𝒘2

𝝈 ෝ𝒚𝒖𝟑

𝒚

Cross_ent 𝑳

Back-propagation
This algorithm is also known as back-propagation

Since differentiation is a linear operator, automatic differentiation can
be implemented efficiently in terms of tensor operations

Back-propagation and automatic differentiations are built-in in Deep
Learning (DL) toolkits, e.g., TensorFlow, PyTorch

Convolutional Neural Networks
Instead of using fully-connected layers, it is more useful to have limited-
window features

◦ E.g., n-grams, skip-word n-grams, word pairs that are nearby

Convolutional Network Networks, in each each CNN layer consists of
◦ Convolution

◦ Max-pooling

Convolutional Neural Networks
Convolution: for the i-th convolution filter of window size k, the
convolution operation on an input sentence 𝒙 produce

𝒛 = 𝑧1, 𝑧2, … , 𝑧𝑡−𝑘+1

𝑧𝑗 = 𝑔1 𝒘𝑖𝒙𝑗 + 𝑏𝑖

◦ 𝒘𝑖 ∈ 𝑹𝒌𝒏𝟏are the linear transform parameters

◦ 𝒙𝑗 denotes the j-th context window in 𝒙

◦ 𝑔1is an activation function such as the rectified linear unit.

Convolutional Neural Networks
Max-pooling: 𝑚𝑖 = max(𝒛)

Often replicated with
◦ Multiple filters to capture most important (weighted) n-gram (context

windows of n words) features

◦ Varying window sizes to allow variable-length n-grams

May have multiple Conv+max-pooling layers

The rest are standard feedforward networks

Convolutional Neural Networks for
Sentence Classification

Experimentation
Experimentation cycle

◦ Learn parameters (e.g. model probabilities) on training set

◦ Tune hyperparameters on development/held-out set

◦ Compute accuracy on test set

Overfitting and generalization
◦ Want a classifier which does well on test data

◦ Overfitting: fitting the training data very well, but not generalizing well to
unsee data (i.e., poor results on test)

◦ Common ways to improve generalization
◦ Dropout

◦ L1, L2 regularization

◦ Cross-validation

◦ Early stopping

Summarize
ML models for text classification

◦ Naïve Bayes classifiers

◦ Multi-class logistic regression

◦ Multi-layer perceptron

◦ Convolutional Neural Networks

Homework Assignment #1
Posted on Canvas

Due in 2 weeks

