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Parts of Speech (POS)
Role of parts-of-speech in grammar

◦ ‘preterminals’

◦ Rules stated in terms of classes of words sharing syntactic properties

noun

verb

adjective

…



Parts of Speech (POS)
The distributional hypothesis: Words that appear in similar contexts have similar 
representations (and similar meanings)

Substitution test for POS: if a word is replaced by another word, does the sentence 
remain grammatical?

He noticed the elephant before anybody else

dog

cat

point

features

*what

*and



Substitution Test
These can often be too strict; some contexts admit substitutability for 
some pairs but not others.

He noticed the elephant before anybody else

*Sandy

He *arrived the elephant before

Both verbs
but transitive vs. intransitive

Both nouns
but common vs. proper



Parts of Speech (POS)



POS Tag Sets (Categories)
Most influential tag sets were those defined for projects to produce large 
POS-annotated corpora:

Brown corpus
◦ 1 million words from variety of genres

◦ 87 tags

UPenn Tree Bank
◦ initially 1 million words of Wall Street Journal

◦ later retagged Brown

◦ first POS tags, then full parses

◦ 45 tags (some distinctions captured in parses)

Cross-lingual considerations for POS tags



Penn Treebank POS Tags

Penn Treebank POS Tags



Verbs

http://www.personal.psu.edu/faculty/x/x/xxl13/teaching/sp07/apling597e/resources/Tagset.pdf

http://www.personal.psu.edu/faculty/x/x/xxl13/teaching/sp07/apling597e/resources/Tagset.pdf


Nouns



RP (Particle)
Used in combination with a verb
◦ She turned the paper over

verb + particle = phrasal verb, often 
non-compositional
◦ turn down, rule out, find out, go on



DT and PDT
DT (Articles)
◦ Articles (a, the, every, no)

◦ Indefinite determiners (another, any, some, each)

◦ That, these, this, those when preceding noun

◦ All, both when not preceding another determiner 
or possessive pronoun

PDT (Predeterminer)
◦ Determiner-like words that precede an article or 

possessive pronoun
◦ all his marbles

◦ both the girls

◦ such a good time



PRP and PRP$
PRP (personal pronoun)
◦ Personal pronouns (I, me, you, he, him, it, etc.)

◦ Reflective pronouns (ending in -self): himself, 
herself

◦ Nominal possessive pronouns: mine, yours, hers

PRP$ (possessive pronouns)
◦ Adjectival possessive forms: my, their, its, his, her



Adjectives
JJ (Adjectives)

◦ General adjectives (happy person, new house)
◦ Ordinal numbers (fourth cat)

JJR (Comparative adjectives)
◦ Adjectives with a comparative ending -er and comparative meaning 

(happier person)
◦ More and less (when used as adjectives) (more mail)

JJS (Superlative adjectives)
◦ Adjectives with a superlative ending -est and superlative meaning 

(happiest person)
◦ Most and least (when used as adjectives) (most mail)



Adverbs
RB (Adverbs)

◦ Most words that end in –ly (highly, heavily)
◦ Degree words (quite, too, very)
◦ Negative markers (not, n’t, never)

RBR (Comparative adverbs)
◦ Adverbs with a comparative ending -er and comparative 

meaning, e.g., run faster
◦ More/less, e.g., more expensive

RBS (Superlative adverbs)
◦ Adverbs with a superlative ending -est and superlative 

meaning, e.g., run fastest
◦ Most/least, e.g., most expensive



IN and CC
IN (preposition, subordinating conjunction)
◦ All prepositions (except to) and subordinating 

conjunctions

◦ He jumped on the table because he was excited

CC (coordinating conjunction)
◦ And, but, not, or

◦ Math operators (plus, minor, less, times) 

◦ For (meaning “because”)
◦ he asked to be transferred, for he was unhappy



The POS Tagging Task
Task:  assigning a POS to each word
not trivial:  many words have several tags

dictionary only lists possible POS, independent of context



Why Tag?
POS tagging can help parsing by reducing ambiguity

Can resolve some pronunciation ambiguities for text-to-speech 
(“desert” – noun: /ˈdɛzərt/, verb: /dɪˈzɜrt/ )

Can resolve some semantic ambiguities



Some Tricky Cases
JJ or VBN
◦ If it is gradable (can insert “very”) = JJ

◦ He was very surprised

◦ If can be followed by a “by” phrase = VBN. If that conflicts with #1 
above, then = JJ
◦ He was invited by some friends of her

◦ He was very surprised by her remarks

JJ or NNP/NNPS
◦ Proper names can be adjectives or nouns

◦ French cuisine is delicious

◦ The French tend to be inspired cooks

JJ

JJ

VBN

JJ

NNPS



Some Tricky Cases
NN or VBG
◦ Only nouns can be modified by adjectives; only gerunds(-ing) can be 

modified by adverbs
◦ Good cooking is something to enjoy

◦ Cooking well is a useful skill

IN or RP
◦ If it can precede or follow the noun phrase = RP

◦ She told off her friends

◦ She told her friends off

◦ If it must precede the noun phrase = IN
◦ She stepped off the train

◦ *She stepped the train off

NN

VBG



Quiz [SLP2]
Find the tagging errors in the following sentences:

I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

Does/VBZ this/DT flight/NN serve/VB dinner/NNS

I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS



Quiz [SLP2]
Find the tagging errors in the following sentences:

I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

Does/VBZ this/DT flight/NN serve/VB dinner/NNS

I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

NNP

NN

VBP

MD



POS Tagging Methods
Similar to text classification, we would like to use machine 
learning methods to do POS tagging.

Using supervised learning, we need to assemble a text corpus 
and manually annotate the POS for every word in the corpus (i.e., 
the Brown corpus) (i.e., the corpus-based methods).

◦ We can divide the corpus into training data, development data and test 
data

To build a good corpus
◦ we must define a task people can do reliably (choose a suitable POS set)
◦ we must provide good documentation for the task

◦ so annotation can be done consistently

◦ we must measure human performance (through dual annotation and inter-
annotator agreement)

◦ Often requires several iterations of refinement



The Simplest POS Tagging Method
We tag each word with its most likely part-of-speech (based 
on the training data)

◦ this works quite well:  about 90% accuracy when trained and tested on 
similar texts

◦ although many words have multiple parts of speech, one POS typically 
dominates within a single text type

How can we take advantage of context to do better?



POS Tagger As Sequence Labeling
Sequence labeling: given a sequence of observations 𝑥 =
𝑥1, 𝑥2, … , 𝑥𝑛, we need to assign a label/type/class 𝑦𝑖 for 
each observation 𝑥𝑖 ∈ 𝑥, leading to the sequence label 𝑦 =
𝑦1, 𝑦2, … , 𝑦𝑛 for 𝑥 (𝑦𝑖 ∈ 𝑌) (𝑌 is the set of possible POS 
tags)

For POS tagging, 𝑥 can be an input sentence where 𝑥𝑖 is the 
𝑖-th word in the sentence, and 𝑦𝑖 can be the POS tag of 𝑥𝑖 in 
𝑥 (𝑌 is the set of the possible POS tags in our data). E.g., 

𝑥 = Does   this    flight    serve    dinner

𝑦 = VBZ    DT      NN        VB         NN



Sequence Labeling
As in text classification, we also want to estimate the distribution from 
the training data:

𝑃 𝑦 𝑥 = 𝑃(𝑦1, 𝑦2, … , 𝑦𝑛|𝑥1, 𝑥2, … , 𝑥𝑛)

So, we can also obtain the predicted label sequence for 𝑥 by:

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦1, 𝑦2, … , 𝑦𝑛|𝑥1, 𝑥2, … , 𝑥𝑛)



Hidden Markov Model (HMM)
Using Bayes’ Rule

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦|𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦
𝑃(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 𝑥 𝑦 𝑃 𝑦

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 𝑥1, 𝑥2, … , 𝑥𝑛|𝑦1, 𝑦2, … , 𝑦𝑛 𝑃(𝑦1, 𝑦2, … , 𝑦𝑛)

First-order Markov assumption: the probability of the label for the current step only depends on the label from the 
previous step, so:

𝑃 𝑦1, 𝑦2, … , 𝑦𝑛 = ς𝑡=1
𝑛 𝑃 𝑦𝑡|𝑦<𝑡 = ς𝑡=1

𝑛 𝑃 𝑦𝑡|𝑦𝑡−1

Independency assumption: the probability of the current word is only dependent on its label:

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛|𝑦1, 𝑦2, … , 𝑦𝑛 = ς𝑡=1
𝑛 𝑃(𝑥𝑡|𝑥<𝑡 , 𝑦) = ς𝑡=1

𝑛 𝑃(𝑥𝑡|𝑦𝑡)

So, in HMM, we need to obtain two types of probabilities:
◦ The transition probabilities: 𝑃 𝑦𝑡|𝑦𝑡−1
◦ The emission probabilities: 𝑃(𝑥𝑡|𝑦𝑡)



Parameter Estimation
Using Maximum Likelihood Estimators as in Naïve Bayes (i.e., just 
counting):

𝑃 𝑦𝑡|𝑦𝑡−1 =
𝑐(𝑦𝑡−1,𝑦𝑡)

𝑐(𝑦𝑡−1)

𝑃 𝑥𝑡|𝑦𝑡 =
𝑐(𝑥𝑡,𝑦𝑡)

𝑐(𝑦𝑡)

With smoothing:

𝑃 𝑥𝑡|𝑦𝑡 =
𝛼+ 𝑐(𝑥𝑡,𝑦𝑡)

𝑌 𝛼 + 𝑐(𝑦𝑡)

How many times 𝑦𝑡−1 and 𝑦𝑡 appear together in the 
training data? 

How many times 𝑦𝑡−1 appears in the 
training data? 

How many times 𝑥𝑡 appears with 𝑦𝑡 in the 
training data? 

How many probabilities 
we have?



Transition Probabilities



Emission Probabilities



Hidden State Network

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1



Decoding
Given the transition and emission probabilities 𝑃 𝑦𝑡|𝑦𝑡−1 and 𝑃(𝑥𝑡|𝑦𝑡), we 
need to find the best label sequence 𝑦∗ = 𝑦1

∗, 𝑦2
∗, … , 𝑦𝑛

∗ for the input sentence 
𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 via:

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 𝑦 𝑥

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑦
𝑃(𝑥,𝑦)

𝑃(𝑥)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 𝑥, 𝑦

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛)

This requires the enumeration over all the possible label sequences (paths) 𝑦
which are exponentially large

◦ E.g., using Penn Treebank with 45 tags
◦ A sentence of length 5 would have 455 = 184,528,15 possible sequences

◦ A sentence of length 20 would have 4520 = 1.16e33 possible sequences



Greedy Decoder
simplest decoder (tagger) assign tags deterministically from left to right

selects 𝑦𝑡
∗ to maximize 𝑃(𝑥𝑡|𝑦𝑡) ∗ 𝑃 𝑦𝑡|𝑦𝑡−1

does not take advantage of right context

can we do better?



Viterbi Algorithm
Basic idea: if an optimal path through a sequence uses label 𝐿 at time 𝑡, then it must 
have used an optimal path to get to label 𝐿 at time 𝑡

We can thus discard all non-optimal paths up to label 𝐿 at time 𝑡

Let 𝑣𝑡(𝑠) be the probability that the HMM is in state (label) s after seeing the first t 
observations (words) and passing through the most probable state sequence 
𝑦1, 𝑦2, … , 𝑦𝑡−1:

𝑣𝑡 𝑠 = 𝑚𝑎𝑥𝑦1,𝑦2,…,𝑦𝑡−1𝑃(𝑥1, 𝑥2, … , 𝑥𝑡 , 𝑦1, 𝑦2, … , 𝑦𝑡−1, 𝑦𝑡 = 𝑠)

Introducing the 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 states to represent the beginning and the end of the 
sentences (𝑦0 = 𝑠𝑡𝑎𝑟𝑡, 𝑦𝑛+1 = 𝑒𝑛𝑑), the probability for the optimal label sequence 
would be: 

𝑣𝑛+1 𝑒𝑛𝑑 = 𝑚𝑎𝑥𝑦1,𝑦2,…,𝑦𝑛𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦0 = 𝑠𝑡𝑎𝑟𝑡, 𝑦1, 𝑦2, … , 𝑦𝑛, 𝑦𝑛+1 = 𝑒𝑛𝑑)



Viterbi Algorithm
𝑣𝑡 𝑠 = 𝑚𝑎𝑥𝑦1,𝑦2,…,𝑦𝑡−1𝑃(𝑥1, 𝑥2, … , 𝑥𝑡, 𝑦0 = 𝑠𝑡𝑎𝑟𝑡, 𝑦1, 𝑦2, … , 𝑦𝑡−1, 𝑦𝑡 = 𝑠)

Initialization (𝑡 = 0):

𝑣0 𝑠 = ቊ
1 𝑖𝑓 𝑠 = 𝑠𝑡𝑎𝑟𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Recurrence (𝑡 > 0):
𝑣𝑡 𝑠 = 𝑚𝑎𝑥𝑠′∈𝑌[𝑣𝑡−1 𝑠′ 𝑃 𝑠 𝑠′ 𝑃(𝑥𝑡|𝑠)]

𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑡 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠′∈𝑌[𝑣𝑡−1 𝑠′ 𝑃 𝑠 𝑠′ 𝑃(𝑥𝑡|𝑠)]

Termination (𝑡 = 𝑛 + 1): the optimal probability is 𝑣𝑛+1 𝑒𝑛𝑑 , following 
the backtrack links (starting at 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑛+1 𝑒𝑛𝑑 ) to retrieve the optimal 
path.



Example
Fish sleep

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1



Word Emission Probabilities
Word Emission Probabilities P ( word | state )

A two-word language:  “fish” and “sleep”

Suppose in our training corpus,
◦ “fish” appears 8 times as a noun and 5 times as a verb

◦ “sleep” appears twice as a noun and 5 times as a verb

Emission probabilities:
◦ Noun

◦ P(fish | noun) : 0.8

◦ P(sleep | noun) : 0.2

◦ Verb
◦ P(fish | verb) : 0.5

◦ P(sleep | verb) : 0.5



Viterbi Probabilities

0 1 2 3

start

verb

noun

end



0 1 2 3

start 1

verb 0

noun 0

end 0

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Init



0 1 2 3

start 1 0

verb 0 .2 * .5

noun 0 .8 * .8

end 0 0

Token 1:  fish

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



0 1 2 3

start 1 0

verb 0 .1

noun 0 .64

end 0 0

Token 1:  fish

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



0 1 2 3

start 1 0 0

verb 0 .1 .1*.1*.5

noun 0 .64 .1*.2*.2

end 0 0 -

Token 2:  sleep

(if ‘fish’ is verb)

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



0 1 2 3

start 1 0 0

verb 0 .1 .005

.64*.8*.5

noun 0 .64 .004

.64*.1*.2

end 0 0 -

Token 2:  sleep

(if ‘fish’ is a noun)

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



0 1 2 3

start 1 0 0

verb 0 .1 .005

.256

noun 0 .64 .004

.0128

end 0 0 -

Token 2:  sleep

(if ‘fish’ is a noun)

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



0 1 2 3

start 1 0 0

verb 0 .1 .005

.256

noun 0 .64 .004

.0128

end 0 0 -

Token 2:  sleep
take maximum,
set back pointers

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



0 1 2 3

start 1 0 0

verb 0 .1 .256

noun 0 .64 .0128

end 0 0 -

Token 2:  sleep
take maximum,
set back pointers

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



 0 1 2 3 

start 1 0 0     0 

verb 0 .1 .256     - 

noun 0 .64 .0128     - 

end 0 0 - .256*.7 

.0128*.1 
 

 

Token 3:  end

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



 0 1 2 3 

start 1 0 0     0 

verb 0 .1 .256     - 

noun 0 .64 .0128     - 

end 0 0 - .256*.7 

.0128*.1 
 

 

Token 3:  end
take maximum,
set back pointers

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



 0 1 2 3 

start 1 0 0     0 

verb 0 .1 .256     - 

noun 0 .64 .0128     - 

end 0 0 - .256*.7 

 

 

Decode:
fish = noun
sleep = verb

start noun verb end0.8

0.2

0.8
0.7

0.1

0.2

0.1
0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



Complexity for Viterbi
time = 𝑂 ( 𝑠2 𝑛)

for 𝑠 states (labels) and 𝑛 words

(Relatively fast:  for 40 states and 20 words,

32,000 steps)


