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Machine Translation (MT)



MT Objectives
Rough translation

◦ for end users: web browsing / for computers: cross-lingual IE

Computer-aided human translation 

◦ for formal documents; helpful when human post-editing is faster 
than full human translation

Fully automatic high-quality translation (FAHQT)

◦ feasible only for narrow sublanguages with restricted semantics

◦ early example: METEO (French-English translation of weather 
forecasts)



Terminologies
Source language F (foreign, e.g., French) 

Target language E (English) 

Parallel corpus 

◦ The same document in two (or more) languages

◦ Translation is expected to be faithful on sentence level

◦ Comparable (English and French Wiki articles on Napoleon) vs. 
Parallel (English and French versions of a speech at the European 
Parliament)



Obstacles To Good MT

Lexical translation problems 

Reordering problems 
◦ Local reordering 

◦ Long-distance reordering



Obstacles To Good MT
Lexical translation problems 

◦ lexical divergences 
◦ need to disambiguate word senses in order to translate, e.g., for homonymous 

(e.g., bass) or polysemous (e.g., know below) words
◦ E.g., knowing a fact or proposition (i.e., I know that snow is white) vs. familiarity with a person 

or location (i.e., I know John) -> French: savoir vs connaître

◦ personal pronoun in some language does not distinguish gender (English does)
◦ French requires specifying adjective gender (English doesn’t)

◦ pro-drop (pronouns can be omitted in some languages)
◦ must identify and resolve implied arguments when translating into English

◦ argument marking
◦ English marks semantic roles by position; Japanese by postpositions; Russian by 

inflection
◦ English: He adores listening to music

◦ Japanese: kare ha ongaku wo         kiku no ga daisuki desu

he          music         to          listening                adores



Obstacles To Good MT: Reordering
Local reordering: 

◦ English adjectives precede nouns; French and Spanish adjectives normally 
follow nouns 

◦ Argument structure and linking: Head-marking languages (marking the 
relation between the head and its dependents on the head) vs. 
dependent-marking languages (marking the relation on the non-head)
◦ English:         the   man-A’s  H house

◦ Hungarian:     az ember   H ház-A a

the    man      house-his

Long distance-reordering 

◦ English, German, French, Mandarin are SVO, Japanese and Hindi are SOV 

◦ Relative clauses are after the head in English, but often before the head 
noun in Mandarin



Obstacles To Good MT: Reordering



Rule-based MT
Direct MT: word-for-word + local re-ordering (need large 
bilingual vocabulary and simple reordering rules (e.g., moving 
adjectives after nouns when translating from English to French)

Transfer MT: incorporates parsing and parse-tree reordering 
(need distinct transfer rules for each pair of languages)

Interlingua: universal semantic representation (analyze the 
source language text into some abstract meaning 
representation, then generate target language from this 
interlingual representation)

Systran: started development in 1968; now hybrid rule-
based/statistical system



Statistical MT
Relies on sentence-aligned bi-text

Canadian Hansards (French-English); Hong Kong Hansards 
(Chinese - English); European Parliament Proceedings (21 
European languages)

Nowadays mine the Web for bitexts 

Automatic sentence alignment (based on length, known 
word translations or word alignment)



Statistical MT
Data-driven approach: making use of available parallel corpora

Rule-based MT focuses on the process, statistical MT focuses on the 
result.

◦ It is impossible for a sentence in one language to be a translation of a sentence 
in another, strictly speaking (e.g., one cannot really translate Hebrew “adonai
roi” (the Lord is my shepherd) into the language of a culture that has no sheep).

◦ The trade-off:
◦ Clear in target language, but cost the fidelity to the original: the Lord will look 

after me (no sheep included)

◦ Faithful to the original, but be obscure to the target language: the Lord is for me 
like somebody who looks after animals with cotton-like hair (not natural in 
English).

◦ So, being both faithful to the source language and natural as an utterance in the 
target language is sometimes impossible. Professional translators actually need to 
balance between these two criteria in practice.

◦ Statistical MT achieves these via the noisy channel model



Statistical MT: 
The Noisy Channel Model
Suppose we are translating French/Foreign sentences 𝑭 to 
English 𝑬

Using Bayes’s rules:



Statistical MT: 
The Noisy Channel Model

Why would we want to decompose 𝑃(𝐸|𝐹) into 𝑃(𝐹|𝐸) and 𝑃(𝐸)? 

◦ Model faithfulness and fluency explicitly 

◦ 𝑃(𝐹|𝐸) is learned from parallel corpus (for faithfulness)

◦ 𝑃(𝐸) can be learned from large monolingual corpus (for fluency)

◦ Similar techniques are used for other tasks as well (e.g., spell checkers, 
speech recognition)



Statistical MT and ASR

Fred Jelinek. The Dawn of Statistical ASR and MT. 2009 



A Translation Model needs to address:

Lexical translation problems 

Reordering problems 
◦ Local reordering 

◦ Long-distance reordering



The Lexical Translation Model: 
IBM Model 1
Translation is based on alignment 
◦ Mapping a target word at position 𝑖 to a source word at position 𝑗

◦ alignment: 𝐴 ∶ 𝑖 → 𝑗

Models 1’s one-many assumptions 
◦ Each target word is generated by exactly one source word 

◦ A target word can be generated by a NULL word; multiple target words 
can be generated by the same source word



Alignment in MT



The Lexical Translation Model: 
IBM Model 1’s Generative Story
Translation model generates a sentence of 𝐹 (given 𝐸) in 3 
steps:

◦ pick a length for 𝐹

◦ pick an alignment of 𝐹 (length 𝐽) and 𝐸 (length 𝐼 + 1)

𝑃 𝐴 𝐸 =
𝜖

(𝐼 + 1)𝐽

◦ pick the 𝑗th word of 𝐹 based on English word 𝑒𝑖 with which it aligns 
using distribution 𝑡(𝑓𝑗|𝑒𝑖)

𝑃 𝐹 𝐸, 𝐴 = ෑ

𝑗=1

𝐽

𝑡(𝑓𝑗|𝑒𝑎𝑗)



The Lexical Translation Model: 
IBM Model 1’s Generative Story
Combining previous equations, we have:

The heart of the translation model is the word translation 
probabilities 𝑡(𝑓𝑗|𝑒𝑖)

Finding the best alignment between a pair of sentences (i.e., 
alignment decoding) can be done efficiently in polynomial time



The Lexical Translation Model: 
EM training
We only have sentence-aligned (but not word-aligned) data 

The EM procedure (we don’t have the model and only have 
incomplete data)

◦ begins by assuming all word translations 𝑡(𝑓𝑗|𝑒𝑖) are equally 
likely 

◦ compute probabilities of alignments 𝑃(𝐴|𝐹, 𝐸) given word 
translation probabilities (E-step 1) 

◦ compute counts of aligned word pairs 𝑡𝑐𝑜𝑢𝑛𝑡(𝑓𝑗|𝑒𝑖), weighted 
by alignment probabilities (E-step 2) 

◦ recompute MLE word translation probabilities from these 
counts (M-step) 

◦ repeat



Example
Considering a corpus with two sentences:

green house   the house

casa verde la  casa

The vocabularies for the two languages are E = {green, 
house, the} and S = {casa, la, verde}

We start with uniform probabilities:
t(casa|green) = 1/3 t(verde|green) = 1/3 t(la|green) = 1/3

t(casa|house) = 1/3 t(verde|house) = 1/3 t(la|house) = 1/3

t(casa|the) = 1/3 t(verde|the) = 1/3 t(la|the) = 1/3



Example
E-step 1a: We first compute 𝑃(𝐴, 𝐹|𝐸) by multiplying all the 
𝑡 probabilities:

green          house

casa             verde

green          house

casa             verde

the          house

la              casa

the          house

la              casa

𝑃(𝐴, 𝐹|𝐸) = 
𝑡(casa|green)
x 𝑡(verde|house) 
= 1/3x1/3
=1/9

𝑃(𝐴, 𝐹|𝐸) = 
𝑡(casa|house)
x 𝑡(verde|green) 
= 1/3x1/3
=1/9

𝑃(𝐴, 𝐹|𝐸) = 
𝑡(la|the)
x 𝑡(casa|house) 
= 1/3x1/3
=1/9

𝑃(𝐴, 𝐹|𝐸) = 
𝑡(la|house)
x 𝑡(casa|the) 
= 1/3x1/3
=1/9



Example
E-step 1b: Normalize 𝑃(𝐴, 𝐹|𝐸) to get 𝑃(𝐴|𝐸, 𝐹) using:

green          house

casa             verde

green          house

casa             verde

the          house

la              casa

the          house

la              casa

𝑃 𝐴 𝐸, 𝐹

=
1/9

2/9
=
1

2

𝑃 𝐴 𝐸, 𝐹

=
1/9

2/9
=
1

2

𝑃 𝐴 𝐸, 𝐹

=
1/9

2/9
=
1

2

𝑃 𝐴 𝐸, 𝐹

=
1/9

2/9
=
1

2



Example
E-step 2: Compute expected (fractional) counts of aligned 
word pairs, by weighting each count by 𝑃(𝐴|𝐸, 𝐹):

green          house

casa             verde

green          house

casa             verde

the          house

la              casa

the          house

la              casa

𝑃 𝐴 𝐸, 𝐹

=
1/9

2/9
=
1

2

𝑃 𝐴 𝐸, 𝐹

=
1/9

2/9
=
1

2

𝑃 𝐴 𝐸, 𝐹

=
1/9

2/9
=
1

2

𝑃 𝐴 𝐸, 𝐹

=
1/9

2/9
=
1

2

tcount(casa|green) = 1/2 tcount(verde|green) = 1/2 tcount(la|green) = 0 total(green)=1

tcount(casa|house) = 1/2+1/2 tcount(verde|house) = 1/2 tcount(la|house) = 1/2 total(house)=2

tcount(casa|the) = 1/2 tcount(verde|the) = 0 tcount(la|the) = 1/2 total(the)=1



Example
M-step: Compute the MLE probability parameters by 
normalizing the tcounts to sum to 1.

tcount(casa|green) = 1/2 tcount(verde|green) = 1/2 tcount(la|green) = 0 total(green)=1

tcount(casa|house) = 1/2+1/2 tcount(verde|house) = 1/2 tcount(la|house) = 1/2 total(house)=2

tcount(casa|the) = 1/2 tcount(verde|the) = 0 tcount(la|the) = 1/2 total(the)=1

t(casa|green) = 1/2 / 1 = 1/2 t(verde|green) = 1/2 / 1 = 1/2 t(la|green) = 0/1 = 0

t(casa|house) = 1/2 = 1/2 t(verde|house) = 1/2 / 2 = 1/4 t(la|house) = 1/2 / 2 = 1/4

t(casa|the) = 1/2 / 1 = 1/2 t(verde|the) = 0/1 = 0 t(la|the) = 1/2 / 1 = 1/2



Example
E-step 1a: We first compute 𝑃(𝐴, 𝐹|𝐸) by multiplying all the 
𝑡 probabilities:

green          house

casa             verde

green          house

casa             verde

the          house

la              casa

the          house

la              casa

𝑃(𝐴, 𝐹|𝐸) = 
𝑡(casa|green)
x 𝑡(verde|house) 
= 1/2x1/4
=1/8

𝑃(𝐴, 𝐹|𝐸) = 
𝑡(casa|house)
x 𝑡(verde|green) 
= 1/2x1/2
=1/4

𝑃(𝐴, 𝐹|𝐸) = 
𝑡(la|the)
x 𝑡(casa|house) 
= 1/2x1/2
=1/4

𝑃(𝐴, 𝐹|𝐸) = 
𝑡(la|house)
x 𝑡(casa|the) 
= 1/2x1/4
=1/8



The Lexical Translation Model: 
EM training
We only have sentence-aligned (but not word-aligned) 
data 

The EM procedure (we don’t have the model and only 
have incomplete data)

◦ begins by assuming all word translations 𝑡(𝑓𝑗|𝑒𝑖) are 
equally likely 

◦ compute probabilities of alignments 𝑃(𝐴|𝐹, 𝐸) given 
word translation probabilities (E-step 1) 

◦ compute counts of aligned word pairs 𝑡𝑐𝑜𝑢𝑛𝑡(𝑓𝑗|𝑒𝑖), 
weighted by alignment probabilities (E-step 2) 

◦ recompute MLE word translation probabilities from 
these counts (M-step) 

◦ repeat

Apply model to data

Estimate model from 
data



A Translation Model Needs To Address:

We just covered: Lexical translation problems 

Reordering problems 
◦ Local reordering 

◦ Long-distance reordering



The Phrasal Translation Model
Word-based translation models are not good at capturing 
reordering 

Phrase-based models tackles the local reordering problem by 
memorizing phrases

The “Standard Model” used by Google (before deep learning).



The Phrasal Translation Model
'Phrases' are word sequences that are consistent with the word alignment, 
i.e. not limited to linguistic phrases 

From parallel data, obtain word alignment 𝐴 (using IBM Models etc.) 

Extract all phrase pairs that are consistent with 𝐴

A phrase pair (𝐸, 𝐹) is consistent with 𝐴, if each word 𝑒 in 𝐸 is either aligned 
to either a word 𝑓 in 𝐹 or NULL and vice versa, and all the words are only 
aligned with each other in the phrase pair and not to any external words.

Score phrase pairs by relative frequency 



The Phrasal Translation Model



The Phrasal Translation Model



The Phrasal Translation Model



The Phrasal Translation Model



The Phrasal Translation Model



The Phrasal Translation Model



A Translation Model needs to address:

Lexical translation problems 

Reordering problems 
◦ We just covered: Local reordering 

◦ Long-distance reordering



Log-linear and Syntax-informed 
Translation Models
Log-linear model: incorporating more features than 𝑃(𝐹|𝐸) and 𝑃 𝐸

◦ e.g., distortion scores that reflect the quality of reordering (Och and Ney, 
2002)

◦ the distortion probability that measures the probability of two consecutive 
in the source language phrases being separated in the target language by a 
span (of the target language words) of a particular length (e.g., 𝑑(𝑠𝑡𝑎𝑟𝑡𝑖 −



Syntax-informed Translation Models



A Translation Model needs to address:

Lexical translation problems 

Reordering problems 
◦ Local reordering 

◦ We just covered: Long-distance reordering

The Language Modeling for translation fluency (i.e., 𝑃(𝐸)) has been 
covered in the prior classes (e.g., with the n-gram models)!



Putting it Together: the Decoder
Once the translation model and language model have been trained, 
translation can be performed by evaluating 

Exhaustive search intractable; must perform pruning

◦ compute the probability of each partial translation 

◦ extend only the b partial translations with the highest probability ('beam 
search’) 

◦ include in the probability of a partial translation (i.e., the current cost) a 
rough estimate of the probability associated with generating the rest of the 
sentence (i.e., the future cost)

◦ approximating the future cost by ignoring the distortion cost and just 
finding the sequence of foreign phrases that has the minimum product of 
the language model and translation model costs



Decoding
Stack decoding

Maintaining a stack of hypotheses.
◦ Actually a priority queue

Iteratively pop off the best-scoring hypothesis, expand it, put back 
on stack

The score for each hypothesis
◦ The current score (the score so far):

𝑐𝑜𝑠𝑡(ℎ𝑦𝑝 𝑆 𝐸, 𝐹 = ෑ

𝑖∈𝑆

𝜙 ഥ𝑓𝑖 , ഥ𝑒𝑖 𝑑 𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 𝑃(𝐸)

◦ Estimate of future costs (approximation by Viterbi algorithm 
ignoring the distortion score)



Decoding: The Lattice Of Possible English 
Translations For Phrases



Evaluation of MT
Fluency: How intelligent, clear, readable, or natural in the target 
language is the translation?

Fidelity: Does the translation have the same meaning as the source?

◦ Adequacy: Does the translation convey the same information as 
source?

◦ Bilingual judges given source and target language, assign a score

◦ Monolingual judges given reference translation and MT result

◦ Informativeness: Does the translation convey enough information as 
the source to perform a task?

◦ What % of questions can monolingual judges answer correctly 
about the source sentence given only the translation.



Automatic Evaluation of MT
Human evaluation is expensive and very slow

Need an evaluation metric that take seconds, not months

Intuition: MT is good if it looks like a human translation

1. Collect one or more human reference translations of the source.

2. Score MT output based on its similarity to the reference translations.

◦ BLUE

◦ NIST

◦ TER

◦ METEOR



BLUE (Bilingual Evaluation Understudy)
“n-gram precision”

Ratio of correct n-grams to the total number of output n-grams
◦ Correct: number of n-grams (unigram, bigram, etc.) the MT output shares 

with the reference translations.

◦ Total: number of n-grams in the MT result.

The higher precision, the better

Recall is ignored (as we don’t know all the possible reference 
translations for a given sentence)



BLUE
Controlled by a number of parameters:

◦ N-gram order 𝑁. Most often 𝑁 = 4
◦ Case sensitivity: By default, we compute case insensitive BLEU scores to evaluate a translator.
◦ Brevity, 𝜌, to penalize short translation.

Basically, the averaged percentage of n-gram matches.

Where:
◦ 𝑡𝑖 is an i-gram in the MT result
◦ 𝐶ℎ(𝑡𝑖) is the number of times 𝑡𝑖 occurs in the result

◦ 𝐶ℎ𝑗(𝑡𝑖) is the number of times 𝑡𝑖 occurs in reference 𝑗

◦ 𝐻(𝑖) is the number of i-grams in the result (𝐻(𝑖) = 𝑛 – 𝑖 + 1)
◦ 𝑛 is the length of the result
◦ 𝐿 is the length of the reference (i.e., in case of multiple references, taking average, the shortest or 

the closet to 𝑛)

Clipping to avoid rewarding 
candidates with extra 

repeated words

Brevity penalty



BLEU Example

Cand 1: Mary no slap the witch green

Cand 2: Mary did not give a smack to a green witch

Ref 1: Mary did not slap the green witch

Ref 2: Mary did not smack the green witch

Ref 3: Mary did not hit a green sorceress 

Cand 1 Unigram Precision:  5/6



BLEU Example

Cand 1 Bigram Precision:  1/5

Cand 1: Mary no slap the witch green

Cand 2: Mary did not give a smack to a green witch

Ref 1: Mary did not slap the green witch

Ref 2: Mary did not smack the green witch

Ref 3: Mary did not hit a green sorceress



BLEU Example

Clip match count of  each n-gram to maximum

count of the n-gram in any single reference

translation

Ref 1: Mary did not slap the green witch

Ref 2: Mary did not smack the green witch

Ref 3: Mary did not hit a green sorceress 

Cand 1: Mary no slap the witch green

Cand 2: Mary did not give a smack to a green witch

Cand 2 Unigram Precision:  7/10



BLEU Example

Ref 1: Mary did not slap the green witch

Ref 2: Mary did not smack the green witch

Ref 3: Mary did not hit a green sorceress 

Cand 2 Bigram Precision:  4/9

Cand 1: Mary no slap the witch green

Cand 2: Mary did not give a smack to a green witch



Modified N-Gram Precision
Average n-gram precision over all n-grams up to size N
(typically 4) using geometric mean.

N

N

n

npp 



1

408.0
5

1

6

5
2 pCand 1:

Cand 2: 558.0
9

4

10

7
2 p



BLEU Score 
Final BLEU Score:  BLEU = BP  p

Cand 1: Mary no slap the witch green.
Best Ref: Mary did not slap the green witch.

Cand 2: Mary did not give a smack to a green witch. 

Best Ref: Mary did not smack the green witch.

846.0     ,7   ,6 )6/71(  eBPrc

345.0408.0846.0 BLEU

1     ,7   ,10  BPrc

558.0558.01 BLEU



BLEU Score Issues
BLEU has been shown to correlate with human evaluation when 
comparing outputs from different SMT systems.

However, it is does not correlate with human judgments when 
comparing SMT systems with manually developed MT (Systran) 
or MT with human translations.

Other MT evaluation metrics have been proposed that claim to 
overcome some of the limitations of BLEU.


