
Dependency
Parsing
Bonan Min

bonanmin@gmail.com

Some slides are based on class materials from Thien Huu Nguyen, Ralph Grishman, David
Bamman, Dan Jurasky, Chris Manning and others

Dependency Syntax
“Between the word and its neighbors, the mind perceives connections,
the totality of which forms the structure of the sentence. The structural
connections establish dependency relations between the words. Each
connection in principle unites a superior and an inferior term.”

Tesnier 1959; Nivre 2005

Dependency Syntax

Dependency syntax doesn’t have non-terminal structure like
a CFG; words are directly linked to each other.

Syntactic structure = asymmetric, binary relations between
words.

Dependency Structures/Trees
A dependency structure is a directed graph 𝐺 = (𝑉, 𝐴) consisting of a set of
vertices 𝑉 and arcs 𝐴 between them. Typically constrained to form a tree:

◦ Each vertex corresponds to a word in the sentence

◦ Single root vertex with no incoming arcs

◦ Every vertex has exactly one incoming arc except root (single head
constraint), defining the parent/children or governor/dependent or
head/tail relations

◦ Each arc is associated with one label to indicate the dependency relation
between the two ends (e.g., nsubj, dobj, det) (i.e., typed arcs)

◦ There is a unique path from the root to each vertex in V (acyclic constraint)

Dependency Trees
Unlike phrase-structure trees, dependency trees aren’t tied to the linear
order of the words in a sentence.

Dependency relations belong to the structural order of a sentence, not
the linear order.

◦ This is different from a phrase-structure tree, where the syntax is
constrained by the linear order of the sentence (a different linear
order yields a different parse tree).

Dependency Trees

From: http://corenlp.run/ (Stanford CoreNLP)

http://corenlp.run/

Dependencies Vs Constituents
Dependency links are closer to semantic relationships; no need to infer
the relationships from the structure of a tree

A dependency tree contains one edge for each word, no intermediate
hidden structures that also need to be learned for parsing.

Easier to represent languages with free word order.

Dependencies vs Constituents

subject: S → NP VP

direct object: S → NP (VP → ... NP ...)

Dependencies vs Constituents

People can write arrows in this or the other way

Dependency Grammar
Captures binary relations between words

◦ nsubj(NBC, suspended)

◦ dobj(Williams, suspended)

Universal Dependencies
Developing cross-linguistically
consistent treebank annotation
for many languages

Goals:

◦ Facilitating multilingual
parser development

◦ Cross-lingual learning

◦ Parsing research from a
language typology
perspective.

http://universaldependencies.org

Universal Dependencies

http://universaldependencies.org

Dependency Grammar

Some Examples

Dependency Parsing
A sentence is parsed by choosing for each word what other word
(including ROOT) is it a dependent of

Usually some constraints:

◦ Only one word is a dependent of ROOT

◦ Don’t want cycles A → B, B → A

I shot an elephant in my pajamas

Methods For Dependency Parsing
Dynamic programming

◦ Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse
items with heads at the ends rather than in the middle

Graph algorithms
◦ You create a Minimum Spanning Tree for a sentence

◦ (McDonald et al. 2005) MSTParser scores dependencies independently using an
ML classifier (he uses MIRA, for online learning, but it can be something else)

Constraint Satisfaction
◦ Edges are eliminated if don’t satisfy hard constraints (Karlsson 1990)

“Transition-based parsing” or “deterministic dependency parsing”
◦ Greedy choice of attachments guided by good machine learning classifiers (i.e.,

MaltParser (Nivre et al. 2008)). Has proven highly effective.

Greedy Transition-based
Dependency Parsing
The parser starts in an initial configuration.

At each step, it asks a guide to choose between one of several
transitions (actions) into new configurations.

Parsing stops if the parser reaches a terminal configuration.

The parser returns the dependency tree associated with the terminal
configuration.

Greedy Transition-based
Dependency Parsing
Eisner’s algorithm runs in time 𝑂(𝑛3).
This may be too much if a lot of data is involved.

Idea: Design a dumber but really fast algorithm and let the machine
learning do the rest.

Eisner’s algorithm searches over many different dependency trees at
the same time.

A transition-based dependency parser only builds one tree, in one left-
to-right sweep over the input.

Generic Parsing Algorithm

Transition-based dependency parsers differ with respect to the
configurations and the transitions that they use.

The Arc-standard Algorithm
The arc-standard algorithm is a simple algorithm for transition-
based dependency parsing.

It is very similar to shift–reduce parsing as it is known for context-
free grammars.

It is implemented in most practical transition-based dependency
parsers, including MaltParser.

Configurations
A configuration for a sentence 𝑤 = 𝑤1, … , 𝑤𝑛 consists of
three components:

◦ A buffer containing words of 𝑤

◦ A stack containing words of 𝑤

◦ The dependency tree constructed so far

Configurations
Initial configuration:
◦ All words are in the buffer

◦ The stack is empty

◦ The dependency tree is empty

Terminal configuration:
◦ The buffer is empty

◦ The stack contains a single word

Possible Transitions
shift(sh):

push the next word in the buffer onto the stack

left-arc(la):

add an arc from the topmost word on the stack, 𝑠1, to the second-
topmost word, 𝑠2, and pop 𝑠2

right-arc(ra):

add an arc from the second-topmost word on the stack, 𝑠2, to the
topmost word, 𝑠1, and pop 𝑠1

Configurations And Transitions
Initial configuration: ([], [0, … , 𝑛], [])

Terminal configuration: ([0], [], 𝐴)

shift (sh):
(𝜎, [𝑖|𝛽], 𝐴) ⇒ ([𝜎|𝑖], 𝛽, 𝐴)

left-arc (la):

([𝜎|𝑖|𝑗], 𝐵, 𝐴) ⇒ ([𝜎|𝑗], 𝐵, 𝐴 ∪ {𝑗, 𝑙, 𝑖}) only if 𝑖 ≠ 0

right-arc (ra):

([𝜎|𝑖|𝑗], 𝐵, 𝐴) ⇒ ([𝜎|𝑖], 𝐵, 𝐴 ∪ {𝑖, 𝑙, 𝑗})

Example

I booked a flight from LA

I booked a flight from LA

Example

I booked a flight from LA

I booked a flight from LA

sh

Example

I booked a flight from LA

I booked a flight from LA

Example

I booked a flight from LA

I booked a flight from LA

sh

Example

I booked a flight from LA

I booked a flight from LA

Example

I booked a flight from LA

I booked a flight from LA

la-subj

Example

booked a flight from LA

I booked a flight from LA

subj

Example

booked a flight from LA

I booked a flight from LA

subj

sh

Example

booked a

I booked a flight from LA

subj

flight from LA

Example

booked a flight from LA

I booked a flight from LA

subj

sh

Example

booked a

I booked a flight from LA

subj

flight from LA

Example

booked a

I booked a flight from LA

subj

flight from LA

la-det

Example

booked

I booked a flight from LA

subj

flight from LA

det

Example

booked

I booked a flight from LA

subj

flight from LA

det

sh

Example

booked

I booked a flight from LA

subj

flight from LA

det

Example

booked

I booked a flight from LA

subj

flight from LA

det

ra-pmod

Example

booked

I booked a flight from LA

subj

flight

det pmod

Example

booked

I booked a flight from LA

subj

flight

det pmod

ra-dobj

Example

booked

I booked a flight from LA

subj det pmod

dobj

Example

booked

I booked a flight from LA

subj det pmod

dobj

done!

Complexity And Optimality
Time complexity is linear, 𝑂(𝑛), since we only have to treat each word
once

This can be achieved since the algorithm is greedy, and only builds one
tree, in contrast to Eisner’s algorithm, where all trees are explored

There is no guarantee that we will even find the best tree given the
model, with the arc-standard model

There is a risk of error propagation

An advantage is that we can use very informative features, for the ML
algorithm

Guides
We need a guide that tells us what the next transition
should be.

The task of the guide can be understood as classification:
Predict the next transition (class), given the current
configuration.

Training A Guide
We let the parser run on gold-standard trees.

We collect all (configuration, transition) pairs and train a classifier on them.

When parsing unseen sentences, we use the trained classifier as a guide.

The number of (configuration, transition) pairs is far too large.

We define a set of features of configurations that we consider to be relevant
for the task of predicting the next transition.

◦ Example: word forms of the topmost two words on the stack and the next two
words in the buffer

We can then describe every configuration in terms of a feature vector (feature
engineering).

Training A Guide
In practical systems, we have thousands of features and hundreds of
transitions.

There are several machine-learning paradigms that can be used to train
a guide for such a task:

◦ SVM, Logistic Regression, Deep Neural Networks

Example Features

Combinations of addresses and attributes (e.g. those marked in the table)

Other features, such as distances, number of children, ...

Conventional Feature Representation

binary, sparse

dim =106 ~ 107

Feature templates: usually a combination of 1 ~ 3 elements from the configuration.

Indicator features

Problems With The Conventional
Feature Representation
Sparse

Expensive (more than 95% of parsing time is consumed by
feature computation)

So, use neural networks/deep learning to learn a dense and
compact feature representation

dense

dim =1000

A Neural Dependency Parser
We represent each word as with its (dense) word
embeddings.

Meanwhile, POS tags and dependency labels (relations) are
also represented as d-dimensional dense vectors.
◦ The smaller discrete sets also exhibit many semantic similarities.

◦ NNS (plural noun) should be close to NN (singular noun)

◦ num (numerical modifier) should be close to amod (adjective modifier).

We extract the tokens for the configurations based on the
stack/buffer positions and use their vectors to obtain the
representation for the configurations

A Neural Dependency Parser

Extract a set of tokens for the configuration based on the positions on the
stack and buffer, and then concatenate their representation vectors.

A Neural Dependency Parser

Alternative Transition Models
There is another version of the arc-standard model, where arcs are
added between the topmost word on the stack and the topmost word
on the buffer

There are actually many other alternatives

Arc-eager model
◦ Contain four transitions:

◦ Shift

◦ Reduce

◦ Left-arc

◦ Right-arc

◦ Advantage: not strictly bottom-up, can create arcs earlier than in the arc-
standard model

Evaluation Of Dependency Parsers
Labelled attachment score (LAS): percentage of correct arcs, relative to
the gold standard

Labelled exact match (LEM): percentage of correct dependency trees,
relative to the gold standard

Unlabeled attachment score/exact match (UAS/ UEM): the same, but
ignoring arc labels

Word-vs sentence-level AS
Example:2 sentence corpus

◦ sentence 1: 9/10 arcs correct

◦ sentence 2: 15/45 arcs correct

Word-level (micro-average):

◦ (9+15) / (10+45) = 0.436

Sentence-level (macro-average):

◦ (9+10+15/45)/2 = 0.617

Word-level evaluation is normally used

Evaluation Of Dependency Parsers

Projectivity
A dependency tree is projective if:
◦ For every arc in the tree, there is a directed path from the head of

the arc to all words occurring between the head and the dependent
(that is, the arc (𝑖, 𝑙, 𝑗) implies that 𝑖 →∗ 𝑘 for every 𝑘 such that
min(𝑖, 𝑗) < 𝑘 < max(𝑖, 𝑗)).

◦ Or equivalently: There are no crossing dependency arcs when the
words are laid out in their linear order, with all arcs above the words

projective

Not projective

Projectivity And Dependency Parsing

Many dependency parsing algorithms can only handle
projective trees
◦ Including all algorithms we have discussed so far

Non-projective trees do occur in natural language
◦ How often depends on language (and treebank)

Non-projective Dependency Parsing
Variants of transition-based parsing

◦ Using a swap-transition to allow non-projective parsing
◦ Contain four transitions: Shift, Swap, Left-arc, and Right-arc

◦ Runtime is 𝑂(𝑛2) in the worst case (but usually less in practice)

◦ Using more than one stack

◦ Pseudo-projective parsing

Graph-based parsing
◦ Minimum spanning tree algorithms

