English Grammar and
Constituency Parsing

Bonan Min

bonanmin@gmail.com

Some slides are based on class materials from Ralph Grishman, Thien Huu Nguyen, David
Bamman, Dan Jurafsky, James Martin, Michael Collins




Syntax

With syntax, we’re moving from labels for discrete items - documents (sentiment
analysis), tokens (POS tagging, NER) - to the structure between items.

Syntax is fundamentally about the hierarchical structure of language and (in some
theories) which sentences are grammatical in a language
words = phrases - clauses - sentences
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Why |Is Syntax Important?

Foundation for (on many levels of representation:
semantic roles, compositional semantics, frame semantics)

Humans communicate complex ideas by composing words together into
bigger units to convey complex meanings
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Why |Is Syntax Important?

Linguistic typology; relative positions of subjects (S), objects
(O) and verbs (V)

SVO English, Mandarin | grabbed the chair
SOV Latin, Japanese | the chair grabbed
VSO Hawaiian Grabbed | the chair
oSV Yoda Patience you must have




Why |Is Syntax Important?

Strong representation for (e.g.,
coreference resolution)
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https://en.wikipedia.org/wiki/Discourse_analysis



Formalisms
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Constituency

Groups of words (“constituents”) behave as single units

“Behave” = show up in the same distributional environments as single units
(e.g., the substitution test)

for POS: if a word is replaced by another word, does the
sentence remain ?

for Constituency: if a constituent is replaced by another
constituent of the same type, does the sentence remain ?



Context-Free Grammar (CFG)

A CFG gives a formal way to define what meaningful constituents are
and exactly how a constituent is formed out of other constituents (or
words). It defines in a language (i.e., defining how
symbols in a language combine to form valid structures)
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Context-Free Grammar (CFG)

N Finite set of non-terminal symbols | NP, VP, S
X Finite alphabet of terminal symbols | the, dog, eat
R Set of production rules, each of the | S — NP VP

formA - B, € (Y UN) * Noun — dog

S A designated start symbol




Derivation

Given a CFG, a derivation is the sequence of productions used to
generate a string of words/terminal symbols (e.g., a sentence), often
visualized as a
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Language

The strings of words (e.g., sentences) are called as
“derivable from the start symbol (S)”

The formal language defined by a CFG is the set of strings
derivable from S

S=>» NP VP =»cats VP =» cats chase NP =» cats chase mice



Preterminals

It is convenient to include a set of symbols called preterminals
(corresponding to the parts of speech) which can be directly rewritten

as terminals (words)

This allows us to separate the productions into a set which generates
sequences of preterminals (the “grammar”) and those which rewrite
the preterminals as terminals (the “dictionary”)




Grouping Alternates

To make the grammar more compact, we group productions
with the same left-hand side:

S > NPVP
NP > N | ARTN | ART ADJ N
VP>V | VNP




Example

Grammar Rules Examples
S — NPVP I + want a morning flight
Noun — flights | breeze | trip | morning
Verb — is | prefer | like | need | want | fly NP — Pronoun 1
Adjective — cheapest | non-stop | first | latest | Proper 'N."”" Los Angcles
| other | direct ' | DetlYommal a+ ﬂl.ght ‘
Pronoun — me | 1| you| it Nominal — Nominal Noun morning + flight
Proper-Noun — Alaska | Baltimore | Los Angeles | e it
| Chicago | United | American VP — Verb do
Determiner — the | a| an| this | these | that | Verb NP it o ik
Pre%) osm'on — from| to | on | near | Verb NP PP leave + Boston + in the morning
Conjunction — and | or | but | Verb PP et < m L Arsily

IOTN P ®] The lexicon for .%.
PP — Preposition NP from + Los Angeles

|37 PRl  The grammar for %, with example phrases for each rule.




Bracketed Notation
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Constituents

internal node is a phrase
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Sentence

Rule Description Example
S—> VP Imperative | * Show me the right way
S— VP NP Declarative |+ The dog barks
S = Aux VP NP Yes/no *  Will you show me the right way?
questions
S - Wh-NP VP wh- * What airlines fly from Burbank to Denver?
S - Wh-NP Aux NP VP | questions * What flights do you have from Burbank to
Tacoma Washington?




Noun Phrases

NP — Pronoun | Proper-noun | Det Nominal

Nominal = Nominal PP
° An elephant [,, in my pajamas]
° The cat [,, on the floor] [.. under the table] [, next to the dog]

Nominal — RelClause, RelClause — (who|that) VP : A relative pronoun
(that, which) in a relative clause can be the subject or object of the
embedded verb.

o Aflight [ that serves breakfast]
o Aflight [ that | got]



Verb Phrases

VP — Verb disappear

VP — Verb NP prefer a morning flight

VP — Verb NP PP prefer a morning flight on Monday
VP — Verb PP leave on Wednesday

VP — Verb S | think [. | want a new flight]

VP — Verb VP want [ to fly today]

Not every verb can appear in each of these productions




Verb Phrases

VP — Verb *1filled

VP — Verb NP * | exist the morning flight

VP — Verb NP PP * | exist the morning flight on Monday
VP — Verb PP * 1 filled on Wednesday

VP — Verb S * | exist [. | want a new flight]

VP — Verb VP *1fill[ to fly today]

Not every verb can appear in each of these productions




Subcategorization

Verbs are compatible with different complements
> Transitive verbs take direct object NP (“I filled the tank”)
° Intransitive verbs don’t (“I exist”)

The set of possible complements of a verb is its

VP = Verb VP * | fill [ve to fly today]

VP — Verb VP | want [vr to fly today]




Coordination

NP — NP and NP the dogs and the cats

Nominal = Nominal and dogs and cats

Nominal

VP = VP and VP | came and saw and conquered
JJ—>JJandJJ beautiful and red

S—>SandS | came and | saw and | conquered




Ambiguity

Most sentences will have more than one parse

Generally different parses will reflect different meanings ...

o : a particular constituent can be attached to
the parse tree at more than one place

“| saw the man with a telescope.”
Can attach PP (“with a telescope”) under NP or VP

o . different sets of phrases can be conjoined by
a conjunction like “and”:

“old man and woman” -> [old [men and women]] or [[old man] and [woman]]?



An Example

| shot an elephant in my pajamas
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Evaluation

Parseval (1991): represent each tree as a
collection of tuples.

Calculate precision, recall, F1 from these
collections of tuples
<l,igjr > e, < Ly iy, jn >
° l: label for the k-th phrase
° [j:index for the first word in the k-th phrase
° Ji:index for the last word in the k-th phrase
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Evaluation
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Evaluation

Nonetheless, phrasal constituents are not always an appropriate unit for
parser evaluation.

° In lexically-oriented grammars, such as CCG and LFG, the ultimate goal is to extract

the appropriate predicate-argument relations or grammatical dependencies, rather
than a specific derivation.

> We can use alternative evaluation metrics based on the precision and recall of
labeled dependencies whose labels indicate the grammatical relations (Lin 1995,
Carroll et al. 1998, Collins et al. 1999).

Why not measuring how many sentences are parsed correctly, instead of
measuring component accuracy in the form of constituents or dependencies?

° The later gives us a more fine-grained metric
> Sentences can be long

o Distinguish between a parse that got most of the parts wrong and one that just got
one part wrong



CFGs

Building a CFG by hand is really hard

To capture all (and only) grammatical sentences, need to
exponentially increase the number of categories (e.g.,
detailed subcategorization info)

Verb-with-no-complement - disappear
Verb-with-S-complement - said
VP - Verb-with-no-complement
VP - Verb-with-S-complement S




Treebanks

Rather than create the rules by hand, we can annotate sentences with
their syntactic structure and then extract the rules from the annotations

: collections of sentences annotated with




Penn Treebank

NPSBJ
NP s ADJP )
TN | TN |
NNP NNP » NP 1 [
| \ S |
Pierre  Vinken CD NNS oid \
| \ will
61  years
NP — DT JJ NN VB NP PP-CLR NP-TMP
NP — DT JJ NNS ! DT NN TN NP CD
NP — DT JJ NN NN o L N NP L
NP — DT JJ JJ NN the  board ! Nov B
NP — DT JJ CD NNS
NP — RB DT JJ NN NN "f ’I’ N|”
NP — RB DT JJ JJ] NNS a nonexecutive  director
NP — DT JJ JJ NNP NNS
NP — DT NNP NNP NNP NNP JJ NN
NP — DT JJ NNP CC JJ JJ NN NNS NP - NNP NNP
NP — RB DT JJS NN NN SBAR
NP — DT VBG JJ NNP NNP CC NNP NP-SBJ - NP, ADJP,
NP — DT JJ NNS , NNS CC NN NNS NN S - NP-SBJ VP
T NN NNP W
D e g VP —  VBNPPP-CLR NP-TMP

Example rules extracted from this single annotation



How To Parse?

Given a CFG and a sentence, how can we obtain the parse tree(s)
for the sentence?

> Top-down parsing: repeat

o expand leftmost non-terminal using first production (save any alternative
productions on backtrack stack)

o if we have matched entire sentence, quit (success)

° if we have generated a terminal which doesn't match sentence, pop
choice point from stack (if stack is empty, quit (failure))

° Bottom-up parsing
° |nefficiency:

> the top-down parsers waste effort to explore trees that are not
consistent with the input while

> the bottom-up parsers waste effort to explore trees that cannot lead to
the start symbol S.

See SLP2 for details

-



Chomsky Normal Form (CNF)

N Finite set of non-terminal symbols NP, VP, S

X Finite alphabet of terminal symbols the, dog, eat

R Set of production rules, each of the form |S— NP VP
A->pBBEQUN)x Noun — dog

S A designated start symbol




Chomsky Normal Form (CNF)

Any CFG can be converted into a weakly equivalent CNF (recognizing the same
set of sentences as existing in the grammar but differing in their derivation).

Case 2: more than 2

Case 1: mix of terminals
non-terminals

and non-terminals

INF-VP — to VP NP — DT JJ NN D ™
DT JJ NN
INF-VP — TO VP NP — X NN NP
X NN
i ™




S = NPVP
Case 3: single non- VP — VBDNP
terminal VP = VPPP VBD — shot
Nominal — Nominal PP DT - an|my
Nominal — NN NN — elephant
A-"B Nominal — NNS
B—o> vy NNS — pajamas
Nominal — PRP
PP — INNP PRP =~ |
A NP — DTNN Pl =2
ﬁ
14 IN = in
NP — Nominal
NP — PRP$ Nominal

| shot an elephant in my pajamas



CNF Conversion

S = NPVWP
Case 3:sw1g|e non- VP — VBD NP
terminal
VP — VPPP VBD — shot
Nominal — Nominal PP DT — an|my
. pajamas |
B— y Nominal - = elephant | | PRP =
PP — INNP FAFY 0y
NP — DTNN N = in
A- vy
pajamas |
N elephant | |
NP — PRP$ Nominal

| shot an elephant in my pajamas



CYK Parsing

For parsing from a grammar expressed in CNF T

Bottom-up dynamic programming T

I shot an elephant in my pajamas
1 2 3 5 7

function CKY-PARSE(words, grammar) returns table

for j < from 1 to LENGTH(words) do
for all {A |A — words[j] € grammar}
table[j— 1, jl<—table[j —1,j]UA
for i < from j — 2 downto O do
for k<—i+1to j—1do
forall {A|A — BC € grammar and B € table[i,k] and C € tablelk, j|}
tablelijl < tablelijl U A

13TV RE] The CKY algorithm.




I shot an elephant in my pajamas

NP, PRP
[0,1]
VBD
[1.,2]
DT
[2,3]
NP, NN
[3,4]
IN
- [4,5]
Each cell i,j keeps track of all
phrase types that can be PRP$
formed from all words from [5,6]

position i through position |

NNS
[6.7]




I shot an elephant in my pajamas
NP, PRP
[0,1]
VBD
[1.2]
DT
[2,3]
NP, NN
(3,4]
IN
[4,5]
What phrases can be formed PRP$
from “shot an elephant in” (5,6]
NNS

[6.7]




I shot an elephant in my pajamas
NP, PRP
[0,1]
VBD
[1.2]
DT
[2,3]
NP, NN
(3.4]
IN
[4,5]
What phrases can be formed PRP$
from “I shot an elephant in my [5,6]

pajamas”

NNS
[6.7]




CNF

In CNF, each non-terminal generates two non-terminals

S— NP VP

[- [..» 1] [,, shot an elephant in my pajamas] ]

If the left-side non-terminal spans tokens i — j, the right
side must also span i — j, and there must be a single
position k that separates them.
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I shot an elephant in my pajamas
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I shot an elephant in my pajamas
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I shot an elephant in my pajamas
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S - NPVWP
VP - VBDNP
VP - VPPP

Nominal — Nominal PP

PP — INNP
NP - DTNN

pajama:
NP = elephant | |

NP — PRP$ Nominal

VBD - shot
DT — an|my
PRP — |
PRP$ — my

IN = in

I shot an elephant in my pajamas
NP, PRP S
' @ @
[0.1] [0,4]
VBD 2 VP 2

[1.2]

(1,4]

DT
[2.3]

NP
[2.4]

NP, NN
[3.4]

IN
[4.5]

PRP$
[5,6]

NP
[5.7]

NNS
[6.7]




S = NPVP
VP — VBD NP
VP — VPPP
Nominal — Nominal PP

Nominal — pajamas |
elephant | |

PP — INNP

NP — DTNN

pajamas |

NP = elephant | |

NP — PRP$ Nominal

VBD - shot
DT — an|my
PRP — |
PRP$ — my

IN = in

I shot an elephant in my pajamas
NP, PRP S
; % @ %]
[0,1] [0,4]
VBD VP
A1 N L V) I
DT NP o
[2,3] [2,4]
NP, NN o

[3,4]

IN
[4.5]

[5,6]

[5.7]

NNS
[6.7]




shot

an

elephant

my

pajamas

NP, PRP
[0,1]

S
[0.4]

S = NPVP
VP — VBD NP
VP — VPPP
Nominal — Nominal PP

Nominal — pajamas |
elephant | |

PP — INNP

NP — DTNN

pajamas |

NP = elephant | |

NP — PRP$ Nominal

VBD - shot
DT — an|my
PRP — |
PRP$ — my

IN = in

VBD
[1.2]

VP
[1.4]

DT
[2,3]

NP
[2,4]

NP, NN
[3.4]

IN
[4.5]

NNS ¥
6.7]




S = NPVP
VP — VBD NP
VP — VPPP
Nominal — Nominal PP

pajamas |

ai
elephant | |
PP — INNP

Nominal —

NP — DTNN

pajamas |

NP = elephant | |

NP — PRP$ Nominal

VBD - shot
DT — an|my
PRP — |
PRP$ — my

IN = in

I shot an elephant in my pajamas
\P. PRP S/——_\
' @ %
[0,1] [0,4]
VB 2 VP

[1,2]

(1.4]

DT
[2,3]

NP
(2,4]

NP, NN
[3.,4]

[3,7]

IN
[4.5]

PP
[4,7]

PRP$
[5.6]

NP
[5.7]

NNS
[6.7]




S = NPVP
VP — VBD NP

PP — INNP
NP - DTNN

pajamas |

NP — PRP$ Nominal

VBD - shot
DT — an|my
PRP — |
PRP$ — my

IN = in

I shot an elephant in my pajamas
NP, PRP S
' @ @ @ @
[0,1] [0,4]
VBD VP VP, VP
A1 T R B 3 I ° | n
DT NP NP
@ @
[2,3] (2,4] [2,7]
NP, NN > > NP
(3.4] [3,7]
IN > PP
[4,5] [4,7]
PRP$ NP
[5,6] [5,7]
NNS
[6,7]




— —
I shot /( elephant / m\?\ ajamas
, AN
NP, PRP & o S K & o \\
S - NPVP [051] [0!4]
VP - VPPP VBD VP VP.]’ VP2
Nominal — Nominal PP @ Qj @
Nominal — glzg;;n;stlll [1 12] [1 ,4] [1 !7] ‘
N T v o
. %) %)
- g 23] | [24] 2,7]
NP — PRP$ Nominal
VBD - shot NP’ NN @ %] NP
DT — an|my [314] [3!7]
= Possibilities: IN Py PP
[4,5] [4.7]
S1 = NP VP
Sz = NP VP2 PRP$ NP
? =+ SPP [5,6] [5,7]
? - PRP VP
? = PRP VP2 NNS
[6,7]




S = NPVP
VP — VBD NP
VP — VPPP
Nominal — Nominal PP

Nominal — pajamas |
elephant | |
PP — INNP
NP — DTNN

pajamas |

NP = elephant | |

NP — PRP$ Nominal

VBD - shot
DT — an|my
PRP — |
PRP$ — my

IN = in

I shot an elephant in my pajamas
NP, PRP S S1. Sz
; @ @ @ @ =
[0,1] [0,4] [0,7]
VBD VP VP, VP2
ne |2 e | ° ° o nn
DT NP NP
%] %
[2,3] [2,4] [2,7]
NP, NN > Q} NP
[3,4] [3,7]
IN > EE
[4,5] [4,7]
Success! We've recognized a PRP3 NI;
total of two valid parses [5.6] [5.7]
NNS
Complexity? [6,7]




CFG

CYK allows us to:
o check whether a sentence in grammatical in the language defined by the CFG

o enumerate all possible parses for a sentence CFG

But it doesn’t tell us on which one of those possible parses is most likely
> might help to to disambiguate

-> Probabilistic context-free grammar



Probabilistic Context-free
Grammar (PCFG)

Probabilistic context-free grammar: each production is also associated
with a probability.

N Finite set of non-terminal symbols NP, VP, S

X Finite alphabet of terminal symbols the, dog, eat

R Set of production rules, each of the form S—> NPVP
A->Blr,LERUN)=* Noun — dog

S A designated start symbol




Probabilistic Context-free
Grammar (PCFG)

We can then calculate the probability of a parse for a given sentence

For a given parse tree T for sentence S comprised of n rules from R
(eachA - B):

P(T) = Iliz, P(BlA)

In practice, we often want to find the single best parse with the highest
probability for a given tree §:

P(S|T)P(T)
T*(S) = argmax;P(T|S) = argmaxy P(S)
= argmaxpP(S|T)P(T) = argmax;P(T)

~
P(S|T)=1, since T includes all the words of S

We calculate the max probability parse using CKY by storing the
max probability of each phrase within each cell as we build it up.



Probabilistic CYK for PCFG

function PROBABILISTIC-CKY (words,grammar) returns most probable parse
and its probability
for j<from 1 to LENGTH(words) do
forall {A| A — words[j| € grammar}
table[j — 1, j,A]< P(A — words|j])
for i <—from j—2 downto O do
fork«—i+1toj—1do
forall {A|A — BC € grammar,
and tableli,k,B| > 0 and tablelk,j,C|] > 0}
if (table[ij, Al < P(A — BC) x table[ik,B] x table[k.j,C]) then

tableli,j,Al < P(A — BC) X table[i,k,B] x table[k,j,C]
backlij,Al«{k,B,C}

return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]




Estimate The Probabilities

Using the treebank to count the statistics

Count(A - f3) Count(A - B)

P(,BlA) — Zy COUTlt(A N y) - Count(A)

We can also estimate the probabilities using a (non-probabilistic)
parser
> Parse the corpus, compute the statistics, and normalize the probabilities

> Might need to use the inside-outside algorithm for ambiguous sentences
(see SLP2,3)



A B PBINP)
NP - NP PP 0.092
NP - DT NN 0.087
NP - NN 0.047
NP - NNS 0.042
NP - DT JJ NN 0.035
NP — NNP 0.034
NP — NNP NNP 0.029
NP - JJ NNS 0.027
NP - QP -NONE- 0.018
NP - NP SBAR 0.017
NP - NP PP-LOC 0.017
NP — JJ NN 0.015
NP — DT NNS 0.014
NP - CD 0.014
NP — NN NNS 0.013
NP - DT NN NN 0.013
NP - NP CC NP 0.013




I shot an elephant in my pajamas

| PRP:0.04
[0.1]
VBD:0.04
[1,2]
DT:0.05
[2,3]
NN:0.03
(3,4]
IN:0.10
Probaiblity of a terminal (word) [4,5]

given its tag PRPS:

0.12

P(A — [5 Al
( B) NNS:0.01

[6,7]




I shot an elephant in my pajamas
PRP:0.04 > >
[0,1]
VBD:0.04 >
[1.,2]

NP:
DT.0.

’ [2,4]

NN:0.03
[3,4]
IN:0.10
[4,5]
PRP$:0.12
[5,6]

NNS:0.01
table(2,4, NP) = P(NP — DT NN) x table(2,3, DT) x table(3,4, NN) | [57]




I shot an elephant in my pajamas
PRP:0.04 > >
[0,1]
VBD:0.04 | ve.
[1,2] 0.0000006
| [1.,4]
NP:
DT.0.05
’ [2,4]
NN:0.03
[3,4]
IN:0.10
[4,5]
We just calculated this value
and can use it now PRP$:0.12
[5.6]

NNS:0.01
table(1,4,VP) = P(VP — VBD NP) x table(1,2,VBD) x table(2,4, NP) [6,7]




I shot an elephant in my pajamas
|\PRP:-321| o S -19.2
[0,1] [0,4]
VBD: -3.21 & VP: -14.3
[1,2] [1,4]
DT:-3.0 | NP:-8.8
[2,3] [2,4]
NN: -3.5
[3.4]
IN: -2.3
[4,5]
Note these values are getting Pzﬂljii
very small! Better to add in -5- .
log space [5.6]
NNS: -4.6

16.7]




I shot an elephant in my\pajamas
PRP: -3.21 > S:-19.2 o
[0,1] [0,4]
VBD:-3:21| VP: -14.3 > o VP1, VP2
[1,2] [1,4] [1,7]
DT:-3.0 | NP:-8.8 . - NP: -24.
[2,3] [2,4] [2,7]
NN: -3.5 & 2 NP: -19.4
[3,4] [3,7]
IN: -2.3 2 PP: -13.¥
[4,5] [4,7]
For any phrase type spanning PRP$: NP: 9.0
[i,j], we only need to keep the 219 - T
max probability given the 5 6] [5,7]
assumptions of a PCFG
NNS: -4.6
[6,7]




I shot an elephant in my pajamas
PRP: -3.21 o > S:-19.2 P o
[0,1] [0,4]
. . VP.-30.2
VBD: -3.21 > VP:-14.3 o o [-1 -
[1,2] [1,4] ,
DT:-3.0 | NP:-8.8 . - NP: -24.7
[2,3] [2,4] [2,7]
NN: -3.5 > o NP: -19.4
[3.,4] [3,7]
IN: -2.3 o PP: -13.6
[4,5] [4,7]
For any phrase type spanning PRP$: .
[i,jl, we only need to keep the 219 NP: -9.0
max probability given the 56 [5,7]
assumptions of a PCFG
NNS: -4.6

[6,7]




I shot an elephant in my pajamas
PRP: -3.21 z o S:-19.2 . o S:-35.7
[0.1] [0.4] [0,7]
. . VP.-30.2
VBD: -3.21 o VP:-14.3 @ & [-1 71
[1,2] [1,4] =
DT:-3.0 | NP:-8.8 P 2 NP: -24.7
[2,3] [2,4] [2,7]
NN: -3.5 o o NP:-19.4
[3,4] [3,7]
IN: -2.3 > PP: -13.6
[4.,5] [4,7]
For any phrase type spanning PRPS: NP:
[i,jl, we only need to keep the 212 9.0
max probability given the [5.6] [5,7]
assumptions of a PCFG
NNS: -4.6
[6,7]




__,——_'——ﬁ__.
I shot /an/— elephant in pajamas

— ~

/

PRP: -3.21 & & :-19.2 & S:-35.7
[0,1] [0,4] [0,7]
VBD: -3.21 > VP: -14.3 m P.-30.2
[1,2] /\4} v \[1 7]
) Y
DT:-3.0 | NP:-8.8™ & - NP: -24.7
[2,3] [2,4] [2,7]
NN: -3.5 & NP: -19.4
3,41 ‘(ﬂ\‘&?]
N
IN: -2.3 2 PP: -13.6
[4,5] P/" ‘Nﬁ’]
As in Viterbi, backpointers let PRPS: NP ‘:90
us keep track on the path 212 -
through the chart that leads to (5 6] [5.7]
the best derivation e

16.,7]




Problems with PCFG

P(T) = [T, P(BIA)

o Each production (e.g., NP = DT NN) is independent of the
rest of tree.

° In real use, productions are strongly dependent on their
place in the tree.

NP - PRP NP - DT NN

Pronoun Non-Pronoun

Subject 91% 9%

Object 34% 66%




Problems with PCFG

P(T) = [T, P(BIA)

NP - PRP NP - DT NN

Pronoun Non-Pronoun
Subject 91% 9%
Object 34% 66%

o With maximum likelihood estimator on Swithboard dataset:

P(NP — DT NN) = 0.28
P(NP — PRP) = 0.25



Splitting Non-Terminals/
Parent Annotation

Rather than having a single rule for each non-terminal P(NP - DT NN),
we can condition on some context (Johnson 1998)

° P_._.(NP-> DT NN)

> P, (NP> DT NN)

More generally, we can encode context by annotating each node in a

tree with its parent (parent annotation) S
o This lets us to learn different probabilities for: e TSeL
o NP (subject) NP? Ve
> NP, (object) DT/\NN VB{EVP

| I l l
The man gaw  PRP

|
This Dramatically increases the size of the grammar = less training

data for each production (data sparsity)

Modern approaches search for best splits that maximize the training
data likelihood (Petrov et al 2006)



Problems with PCFGs

: Lexical information in a PCFG has little influence
on the overall parse structure
> The identity of the verbs, nouns, and prepositions might be crucial to disambiguate the parses.

S S NP NP

NP/\VP NP/\VP /\ /\

NNS VBD NP PP NNS VBD NP
‘ ‘ ‘ /\ ‘ | /\ NP PP and Noun Noun Prep NP
workers dumped NNS P NP  workers dumped NP PP /\ | /N
‘ ‘ /\ | /\ Noun Prep NP cats dogs in NP Conj NP
sacks into DT NN NNS P NP ‘ | |
‘ ’ | ‘ /\ dogs in  Noun Noun and Noun
a bin sacks into DT NN
a‘z bin houses houses cats

[ JTIne L] Two possible parse trees for a prepositional phrase attachment ambiguity. The left parse is JJPIPERY  An instance of coordination ambiguity. Although the left structure is intu-

the sensible one, in which “into a bin describes the resulting location of the sacks. In the right incorrect parse, itively the correct one, a PCFG will assign them identical probabilities since both structures
the sacks to be dumped are the ones which are already “into a bin”, whatever that might mean. use exactly the same set of rules. After Collins (1999).




Lexicalized PCFG

Annotate each node with its head + POS tag of head

TOP
S(dumped,VBD)
NP(workers,NNS) VP(dumped,VBD)
NNS(workers,NNS) VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)
workers dumped NNS(sacks,NNS) P(into,P) NP(bin,NN)
sacks into.  DT(a,DT) NN(bin,NN)
a bin
Internal Rules Lexical Rules
TOP —  S(dumped,VBD) NNS(workers, NNS) — workers
S(dumped,VBD) — NP(workers,NNS) VP(dumped,VBD) VBD(dumped,VBD) — dumped
NP(workers, NNS) — NNS(workers,NNS) NNS(sacks,NNS) — sacks
VP(dumped,VBD) — VBD(dumped, VBD) NP(sacks,NNS) PP(into,P) | P(into,P) — into
PP(into,P) — P(into,P) NP(bin,NN) DT(a,DT) > oa
NP(bin,NN) —» DT(a,DT) NN (bin,NN) NN(bin,NN) — bin
TR ENT] A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below

we show the PCFG rules needed for this parse tree, internal rules on the left, and lexical rules on the right.




Lexicalized PCFG

Annotate each node with its head + POS tag of head

We can’t estimate probabilities for such fine-grained productions well:

Count(VP(dumped,VBD) — VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))
Count(VP(dumped,VBD))

Different models make different independent assumptions to make this
quantity tractable (Collins 1999, Charniak 1997)



Parameters in a Lexicalized PCFG

An example parameter in a PCFG:
p(S — NP VP)

An example parameter in a Lexicalized PCFG:

p(S(saw) =, NP(man) VP(saw)

Finite set of non-terminal symbols | NP, VP, S

Set of production rules

N

X Finite alphabet of terminal symbols | the, dog, eat
R

S

A designated start symbol

R is a set of rules which take one of three forms:
o X(h) -, Y,(h)Y,(w)forX € N,and Y;,Y, € N,and h,w € )
o X(h) », Yy(w)Y,(h)forX € N,and Y;,Y, € N,and h,w € )
o X(h) > hforX€e N,andh € )



Parsing with Lexicalized PCFG

For PCFG in Chomsky Normal Form, we can parse an n word sentence in
O(n3 x |N|3)

Lexicalized PCFG: the grammar looks just like a Chomsky normal form CFG,
but with potentially O(|Y|? X |N|?) possible rules.

Naively, parsing using the dynamic programming algorithm will take O (n3 x
IY]? x |[N|3) time. But |}}]|? can be huge!!

Crucial observation: at most O(n? X |N|?) rules can be applicable to a given
sentence wq, W, ..., w,, of length n. This is because any rules which contain a
lexical item that is not one of w{, w,, ..., w,,, can be safely discarded.

The result: we can parse in 0(n® X |N|3) time.

http://www.cs.columbia.edu/~mcollins/cs4705-fall2018/slides/parsing3.pdf



http://www.cs.columbia.edu/~mcollins/cs4705-fall2018/slides/parsing3.pdf

