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Bag of Words Models
When do we need elaborate linguistic analysis?

Look at NLP applications
◦ document retrieval (a.k.a., information retrieval)

◦ opinion mining

◦ association mining

See how far we can get with document-level bag-of-words models
◦ and introduce some of our mathematical approaches



Application 1: Information Retrieval
Task:  given query = list of keywords, identify and rank relevant 
documents from collection

Basic idea:  
◦ Find documents whose set of words most closely matches words in query



Vector Space Model
Suppose the document collection has n distinct words, w1, …, wn

Each document is characterized by an n-dimensional vector whose ith

component is the frequency of word wi in the document

Example
◦ D1 = [The cat chased the mouse.]

◦ D2 = [The dog chased the cat.]

◦ W = [The, chased, dog, cat, mouse]    (n = 5)

◦ V1 = [  2  ,     1      ,   0  ,   1  ,    1    ]

◦ V2 = [  2  ,     1      ,   1  ,   1  ,    0    ]



Weighting the Components
Unusual words like elephant determine the topic much more than 
common words such as “the” or “have”

◦ can ignore words on a stop list or

◦ weight each term frequency tfi by its inverse document frequency idfi

where N = size of collection and ni = number of documents containing 
term i 
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Cosine Similarity
Define a similarity metric between topic vectors

A common choice is cosine similarity (normalized dot product):

The cosine similarity metric is the cosine of the angle between the term 
vectors
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Verdict: a Success
For heterogeneous text collections, the vector space model, tf-idf
weighting, and cosine similarity have been the basis for successful 
document retrieval for over 50 years

◦ stemming required for some languages

◦ limited resolution:  returns documents, not answers



Application 2: Opinion Mining
Task:  judge whether a document expresses a positive or negative opinion 
(or no opinion) about an object or topic

◦ classification task

◦ valuable for producers/marketers of all sorts of products

Simple strategy: rule-based approach
◦ make lists of positive and 

negative words

◦ see which predominate in a 

given document
(and mark as ‘no opinion’ if there 

are few words of either type

◦ problem:  hard to make such lists
◦ hard to switch to different 

domains/labels/languages



Training a Classification Model
Supersede the rule-based approach

◦ A generic (task-independent) learning algorithm to train a 
classifier/function/model from a set of labeled examples

◦ The classifier learns, from these labeled examples, the characteristics of a 
new text should have in order to be assign to some label

Advantages
◦ Annotating/locating training examples is cheaper than writing rules

◦ Easier updates to changing conditions (annotate more data with new labels 
for new domains)



Naive Bayes Classification
Identify most likely class

s =   argmax P ( t | W)
t є {pos, neg}

Use Bayes’ rule
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Doesn’t change if 
changing t, so we’re 
going to drop it

Based on the naïve assumption of 
independence of the word probabilities



Training
Estimate probabilities from the training corpus (N documents) using 
maximum likelihood estimators

P ( t ) = count (docs labeled t) / N

P ( wi | t ) = 

count ( docs labeled t containing wi )
count ( docs labeled t)



Text Classification: Flavors
Bernoulli model:  use presence (/ absence) of a term in a 
document as feature

◦ formulas on previous slide

Multinomial model:  based on frequency of terms in 
documents:

◦ P ( t ) =    total length of docs labeled t

total size of corpus

◦ P ( wi | t ) = count (instances of wi in docs labeled t)
total length of docs labeled t

Better performance on long documents



Text Classification: Flavors
Bernoulli model:  use presence (/ absence) of a term in a 
document as feature

◦ formulas on previous slide

Multinomial model:  based on frequency of terms in 
documents:

◦ P ( t ) =    total length of docs labeled t

total size of corpus

◦ P ( wi | t ) = count (instances of wi in docs labeled t)
total length of docs labeled t

Better performance on long documents



The Importance of Smoothing
Suppose a glowing review SLP2 (with lots of positive words) includes 
one word, “mathematical”, previously seen only in negative reviews

P ( positive | SLP2 ) = 0

because P ( “mathematical” | positive ) = 0

The maximum likelihood estimate is poor when there is very little data

We need to ‘smooth’ the probabilities to avoid this problem



Add-One (Laplace) Smoothing
A simple remedy is to add 1 to each count
◦ for the conditional probabilities P( w | t ): Add 1 to each c(w, t)

◦ Increase the denominator by number of unique words (|V|). That is, 
add |V| to c(t) to keep them as probabilities (sum up to 1) 
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Some Useful Resources Using NLTK
Sentiment Analysis with Python NLTK Text Classification

◦ http://text-processing.com/demo/sentiment/

NLTK Code (simplified classifier)

◦ http://streamhacker.com/2010/05/10/text-classification-sentiment-analysis-naive-bayes-
classifier

http://text-processing.com/demo/sentiment/
http://text-processing.com/demo/sentiment/


Problems with Bag-of-Words Models
Ambiguous terms: is “low” a positive or a negative term? 

◦ “low” can be positive: “low price”

◦ or negative: “low quality”

Negation: How to handle “the equipment never failed”? A trick:
◦ modify words following negation

“the equipment never NOT_failed”

◦ treat them as a separate ‘negated’ vocabulary

How far can this trick go?

e.g., “the equipment never failed and was cheap to run”

→ “the equipment never NOT_failed NOT_and NOT_was NOT_cheap NOT_to
NOT_run”

have to determine scope of negation



Verdict: Mixed
A simple bag-of-words strategy with a NB model works quite well for 
simple reviews referring to a single item

◦ Very fast, low storage requirements

◦ Robust to irrelevant features
◦ Irrelevant features cancel each other without affecting results

◦ Very good in domains with many equally important features

◦ Optimal if the independence assumptions hold
◦ If assumed independence is correct, then it is the Bayes Optimal Classifier for problem

but fails
◦ for ambiguous terms

◦ for negation

◦ for comparative reviews

◦ to reveal aspects of an opinion
◦ the car looked great and handled well, but the wheels kept falling off



Application 3: Association Mining
Goal:  find interesting relationships among attributes of an object in a 
large collection …

Objects with attribute A also have attribute B
◦ e.g., “people who bought A also bought B”

For text:  documents with term A also have term B
◦ widely used in scientific and medical literature



Bag-of-Words
Simplest approach

◦ look for words x and y for which
frequency (x and y in same document) >> frequency of x * frequency of y

◦ Or use Mutual Information: 

Doesn’t work well
◦ want to find names (of companies, products, genes), not individual words

◦ interested in specific types of terms

◦ want to learn from a few examples
◦ need contexts to avoid noise



Beyond Bag-of-Words Models
Effective Text Association Mining Needs

◦ Name recognition

◦ Term classification

◦ Ability to learn patterns (lexical sequence or syntactic)

Semantic and syntactic analyzers at varying levels can help

the duration of diabetes mellitus was 
the significant risk factor for cataracts



Conclusion
We have reviewed bag-of-words models in the context of three tasks

◦ Document retrieval

◦ Opinion mining

◦ Association mining

Some tasks can be handled effectively (and very simply) by bag-of-
words models,

but most benefit from an analysis of language structure


